Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse angulaire des particules dans le champ magnétique

La Vitesse angulaire d'une particule dans un champ magnétique est calculée lorsqu'une particule de masse m et de charge q se déplace dans un champ magnétique constant B.

ωp=qpHmp

Vitesse longitudinale de l'extrémité libre pour les vibrations longitudinales

La formule de Vitesse longitudinale de l'extrémité libre pour les vibrations longitudinales est définie comme une mesure de la Vitesse de l'extrémité libre d'un objet subissant une vibration longitudinale, qui est influencée par l'énergie cinétique et la masse de l'objet contraint, donnant un aperçu de l'effet de l'inertie dans les vibrations longitudinales et transversales.

Vlongitudinal=6KEmc

Vitesse du petit élément pour les vibrations transversales

La formule de la Vitesse d'un petit élément pour les vibrations transversales est définie comme une mesure de la Vitesse d'un petit élément dans une vibration transversale, qui est affectée par l'inertie de la contrainte, et est utilisée pour analyser le mouvement des particules dans les vibrations longitudinales et transversales.

vs=(3lx2-x3)Vtraverse2l3

Vitesse transversale de l'extrémité libre

La formule de la Vitesse transversale de l'extrémité libre est définie comme une mesure de la Vitesse de l'extrémité libre d'un système vibrant, influencée par l'effet de l'inertie de la contrainte dans les vibrations longitudinales et transversales, donnant un aperçu du comportement dynamique du système sous diverses contraintes.

Vtraverse=280KE33mc

Vitesse d'écoulement uniforme pour la fonction de courant au point d'écoulement combiné

La Vitesse d'écoulement uniforme pour la fonction de flux au point dans la formule de flux combiné est connue à partir de la relation de la fonction de flux en raison du flux uniforme et de la fonction de flux en raison de la source considérant l'angle 'θ' et la distance de O à P(x,y) comme 'r' en coordonnées polaires.

U=ψ-(q2π∠A)A'sin(∠A)

Vitesse à l'aide de l'équation du débit d'eau

La Vitesse utilisant l'équation du débit d'eau est définie comme la Vitesse d'écoulement lorsque la surface de la section transversale du tuyau et le débit d'eau sont donnés.

Vf=QwAcs

Vitesse angulaire compte tenu du débit théorique et du déplacement volumétrique

La Vitesse angulaire donnée par la formule de débit théorique et de déplacement volumétrique est définie comme une mesure de la Vitesse de rotation d'une pompe hydraulique, ce qui est crucial pour déterminer les performances et l'efficacité de la pompe dans diverses applications industrielles.

n1=QgpVgp

Vitesse de décollage pour une Vitesse de décrochage donnée

La Vitesse de décollage pour une Vitesse de décrochage donnée est une mesure de la Vitesse minimale requise pour qu'un avion décolle, calculée en multipliant la Vitesse de décrochage par un facteur de sécurité de 1,2, garantissant une marge de sécurité au-dessus de la Vitesse de décrochage pour éviter une panne moteur ou une perte de contrôle. pendant les phases critiques du vol.

VLO=1.2Vstall

Vitesse de décrochage pour une Vitesse de décollage donnée

La Vitesse de décrochage pour une Vitesse de décollage donnée est la Vitesse minimale à laquelle un avion peut maintenir un vol en palier, calculée en divisant la Vitesse de décollage par 1,2.

Vstall=VLO1.2

Vitesse de décollage pour un poids donné

La Vitesse de décollage pour un poids donné est une mesure de la Vitesse minimale requise pour qu'un objet décolle du sol, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximal.

VLO=1.2(2WρSCL,max)

Vitesse de décrochage pour un poids donné

La Vitesse de décrochage pour une masse donnée est une mesure de la Vitesse à laquelle une aile d'avion décroche, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximale, fournissant un seuil de Vitesse critique pour des opérations aériennes sûres.

Vstall=2WρSCL,max

Vitesse pour un taux de virage donné pour un facteur de charge élevé

La Vitesse pour un taux de virage donné pour un facteur de charge élevé est la Vitesse requise pour qu'un avion maintienne un taux de virage spécifique tout en connaissant un facteur de charge élevé. Cette formule calcule la Vitesse en fonction de l'accélération gravitationnelle, du facteur de charge et du taux de virage. Comprendre et appliquer cette formule est essentiel pour les pilotes et les ingénieurs afin d'optimiser la manœuvrabilité des avions.

v=[g]nω

Vitesse de rotation pour le couple requis dans le roulement à collerette

La Vitesse de rotation pour le couple requis dans la formule de palier à collier est connue tout en considérant la viscosité du fluide, le rayon intérieur et extérieur du collier, l'épaisseur du film d'huile et le couple requis pour surmonter la résistance visqueuse.

N=τtμπ2(R14-R24)

Vitesse à la sortie pour la perte de charge à la sortie du tuyau

La Vitesse en sortie pour la formule de perte de charge en sortie de conduite est connue en considérant la racine carrée de la perte de charge en sortie de conduite et l'accélération gravitationnelle.

v=ho2[g]

Vitesse du fluide pour la perte de charge due à une obstruction dans le tuyau

La Vitesse du fluide pour la perte de charge due à l'obstruction dans la formule du tuyau est connue en tenant compte de la perte de charge, du coefficient de contraction, de la surface du tuyau et de la surface maximale de l'obstruction.

Vf=Ho2[g](ACc(A-A'))-1

Vitesse du liquide à vena-contracta

La formule de la Vitesse du liquide à la veine-contracta est connue en considérant la surface du tuyau et la zone maximale d'obstruction dans le tuyau, le coefficient de contraction et la Vitesse du fluide dans le tuyau.

Vc=AVfCc(A-A')

Vitesse du fluide compte tenu de la contrainte de cisaillement

La formule de la Vitesse du fluide en fonction de la contrainte de cisaillement est définie en fonction de la contrainte de cisaillement, de la viscosité dynamique et de la distance entre les couches de fluide adjacentes.

V=Yτμ

Vitesse tangentielle pour un écoulement sans soulèvement sur un cylindre circulaire

La Vitesse tangentielle pour l'écoulement sans levage sur la formule du cylindre circulaire est fonction de la coordonnée radiale, de la Vitesse du courant libre, du rayon du cylindre et de l'angle polaire.

Vθ=-(1+(Rr)2)Vsin(θ)

Vitesse radiale pour un écoulement sans soulèvement sur un cylindre circulaire

La formule de Vitesse radiale pour un écoulement sans levage sur cylindre circulaire est définie comme la fonction de la Vitesse radiale, de la distance radiale par rapport à l'origine, de l'angle polaire et de la Vitesse du courant libre.

Vr=(1-(Rr)2)Vcos(θ)

Vitesse tangentielle pour un écoulement vortex 2D

La formule de Vitesse tangentielle pour l'écoulement vortex 2D est définie comme la fonction de la force de l'écoulement vortex et de la distance radiale du point à l'origine, elle représente la composante de Vitesse dans la direction circonférentielle autour du centre du vortex.

Vθ=-γ2πr

Vitesse radiale pour le flux de levage sur un cylindre circulaire

La Vitesse radiale pour l'écoulement de levage sur la formule du cylindre circulaire est définie comme la fonction de la force du vortex, de la distance radiale, de l'angle polaire et du rayon du cylindre.

Vr=(1-(Rr)2)Vcos(θ)

Vitesse tangentielle pour le flux de levage sur un cylindre circulaire

La Vitesse tangentielle pour l'écoulement de levage sur la formule du cylindre circulaire est une fonction de la coordonnée radiale, de la Vitesse du courant libre, du rayon du cylindre, de la force du vortex et de l'angle polaire.

Vθ=-(1+(Rr)2)Vsin(θ)-Γ2πr

Vitesse de crête donnée Temps d'accélération

La formule de Vitesse de crête donnée pour le temps d'accélération est définie comme le produit du temps d'accélération et de l'accélération du train. Elle est également connue sous le nom de Vitesse maximale du train.

Vm=tαα

Vitesse de planification

La formule de Vitesse programmée est définie comme le rapport entre la distance parcourue entre deux arrêts et la durée totale de la course, y compris le temps d'arrêt (durée programmée).

Vs=DTrun+Tstop

Vitesse du flux à l’emplacement de l’instrument

La formule de Vitesse du cours d'eau à l'emplacement de l'instrument est définie comme la Vitesse de l'eau dans le cours d'eau. Elle est la plus élevée au milieu du cours d'eau près de la surface et la plus lente le long du lit et des berges du cours d'eau en raison de la friction.

v=aNs+b

Vitesse de déplacement dans la rectifieuse plane à broche horizontale et verticale étant donné le MRR

La Vitesse de déplacement dans les meuleuses de surface à broche horizontale et verticale étant donné le MRR, est une méthode permettant de déterminer le mouvement de va-et-vient de la table de travail par rapport à la meule lorsque la quantité de MRR requise est connue. La Vitesse de déplacement est donnée en fonction de différents paramètres tels que l'état de surface souhaité, les différentes tailles de grains de la meule, etc.

Vtrav=Zwfdcut

Vitesse de déplacement pour rectifieuse cylindrique et interne compte tenu du MRR

La Vitesse de déplacement pour les meuleuses cylindriques et internes compte tenu du MRR est une méthode permettant de déterminer le mouvement de va-et-vient de la table de travail par rapport à la meule lorsque la quantité de MRR requise est connue. La Vitesse de déplacement est donnée en fonction de différents paramètres tels que l'état de surface souhaité, les différentes tailles de grains de la meule, etc.

Utrav=ZwπfDm

Vitesse en tout point de l'élément cylindrique

La Vitesse à tout point de la formule de l'élément cylindrique est définie comme la Vitesse à laquelle le fluide pénètre dans le tuyau formant un profil parabolique.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Vitesse à la sortie de la buse pour un débit maximal de fluide

La Vitesse à la sortie de la buse pour un débit maximal de fluide est cruciale pour déterminer l'efficacité et les performances des systèmes de dynamique des fluides. Il est directement corrélé au rapport de pression à travers la buse, à la densité du fluide et aux caractéristiques de conception de la buse, influençant le débit et l'efficacité de la propulsion dans des applications telles que les moteurs de fusée et les systèmes de pulvérisation industriels. Comprendre et optimiser cette Vitesse est essentiel pour atteindre les résultats opérationnels souhaités dans les applications d’ingénierie et technologiques.

Vf=2yP1(y+1)ρa

Vitesse de phase

La formule de Vitesse de phase est définie comme une onde est la Vitesse à laquelle l'onde se propage dans un milieu. Il s'agit de la Vitesse à laquelle la phase de n'importe quelle composante de fréquence de l'onde se déplace.

Vp=[c]sin(ψp)

Vitesse d'écoulement du flux

La Vitesse d'écoulement du flux est définie comme le débit du flux dans le tuyau à un débit moyen du débit de décharge.

v=(γf4μ)dh/dx(Rinclined2-dradial2)

Vitesse maximale entre les plaques

La Vitesse maximale entre les plaques est définie comme la Vitesse maximale ou maximale au niveau de la ligne médiane des plaques dans l'écoulement du fluide.

Vmax=(w2)dp|dr8μ

Vitesse angulaire moyenne du volant

La formule de la Vitesse angulaire moyenne du volant d'inertie est définie comme la Vitesse angulaire moyenne d'un volant d'inertie, qui est un dispositif mécanique rotatif qui stocke de l'énergie, et est utilisée pour déterminer la Vitesse de rotation du volant d'inertie dans un système mécanique, en particulier dans la conception des volants d'inertie.

ω=nmax+nmin2

Vitesse de coupe donnée Vitesse de broche

Vitesse de coupe donnée La Vitesse de broche est définie comme la Vitesse à laquelle l'outil de coupe coupe la pièce exprimée en m/min.

V=πDN

Vitesse proportionnelle donnée à l'angle central

La Vitesse proportionnelle donnée par l'angle central est définie comme le rapport entre la Vitesse du fluide dans un tuyau partiellement rempli et la Vitesse lorsque le tuyau est entièrement rempli.

Pv=(1-(360π180)sin(central)2πcentral)23

Vitesse proportionnelle lorsque le coefficient de rugosité ne varie pas avec la profondeur

La Vitesse proportionnelle lorsque le coefficient de rugosité ne varie pas avec la profondeur calcule la Vitesse proportionnelle lorsque nous avons des informations préalables sur d'autres paramètres

Pv=(rpfRrf)23

Vitesse en cours d'exécution Partiellement pleine donnée Décharge

La Vitesse lors d'un fonctionnement partiellement plein donné est définie comme la Vitesse d'écoulement lorsque l'égout n'est pas complètement rempli, influencée par la profondeur et la pente.

Vs=qa

Vitesse lors de l'exécution complète de la décharge donnée

La Vitesse pendant le fonctionnement à pleine capacité donnée est définie comme la Vitesse du fluide se déplaçant à travers un tuyau ou un canal entièrement rempli, généralement à capacité maximale.

V=QA

Vitesse pendant le fonctionnement partiellement complet compte tenu de la décharge proportionnelle

La Vitesse lors d'un fonctionnement partiellement plein compte tenu d'un débit proportionnel est définie comme la Vitesse d'écoulement lorsque l'égout n'est pas complètement rempli, influencée par la profondeur et la pente.

Vs=PqVAa

Vitesse pendant le fonctionnement à pleine charge, compte tenu de la décharge proportionnelle

La Vitesse pendant le fonctionnement à plein débit proportionnel est définie comme la Vitesse d'écoulement du fluide dans un tuyau lorsqu'il est complètement rempli, influencée par la pente et la rugosité du tuyau.

V=VsaPqA

Vitesse de surface de la roue compte tenu du nombre de copeaux produits par temps

La Vitesse de surface de la meule étant donné le nombre de copeaux produits par temps est définie comme la Vitesse à laquelle le bord extérieur de la meule se déplace par rapport à la surface de la pièce, influençant la formation de copeaux et le taux d'enlèvement de matière pendant les opérations de meulage.

vT=NcApcg

Vitesse de surface de la meule donnée constante pour la meule

La Vitesse de surface de la meule, donnée constante pour la meule, est définie comme la Vitesse à laquelle le bord extérieur de la meule se déplace pendant le fonctionnement, garantissant des performances de coupe et une finition de surface constantes, quels que soient d'autres facteurs tels que le diamètre de la meule ou la Vitesse de la machine.

VT=KVwfinacmax2

Vitesse de surface de la pièce donnée constante pour la meule

La Vitesse de surface de la pièce, donnée constante pour la meule, est définie comme la Vitesse à laquelle un point de sa surface dépasse un point de référence fixe par unité de temps.

vw=(acMax2)VtKgfi

Vitesse de coupe pour un temps de production minimum

La Vitesse de coupe pour le temps de production minimum est une méthode pour déterminer la Vitesse de coupe requise pour opérer sur une pièce à usiner de telle sorte que le temps de production pour un lot donné soit minimum.

Vp=Vref((nmptLref(1-nmpt)tct)nmpt)

Vitesse de coupe de référence en utilisant le temps de production minimum

La Vitesse de coupe de référence utilisant le temps de production minimum est une méthode pour déterminer la Vitesse de coupe optimale requise pour une taille de lot donnée dans une condition d'usinage de référence pour fabriquer de sorte que le temps de production total soit minimum.

Vref=Vp(nmptLref(1-nmpt)tct)nmpt

Vitesse de coupe pour un temps de production minimum compte tenu du coût de changement d'outil

La Vitesse de coupe pour un temps de production minimum compte tenu du coût de changement d'outil est une méthode permettant de déterminer la Vitesse de coupe nécessaire pour opérer sur une pièce de sorte que le temps de production pour un lot donné soit minimum.

Vp=Vref((nmptMminLref(1-nmpt)Cct)nmpt)

Vitesse lissée

La formule Smoothed Velocity est l'estimation lissée de la Vitesse actuelle de la cible sur la base des détections passées par le radar de surveillance track-while-scan.

vs=vs(n-1)+βTs(xn-xpn)

Vitesse cible

La formule de Vitesse cible est définie comme la Vitesse de la cible qui se déplace avec la fréquence doppler par rapport à la source d'onde.

vt=Δfdλ2

Vitesse de coupe instantanée

La Vitesse de coupe instantanée fait référence à la Vitesse linéaire d'un point spécifique sur le tranchant de l'outil de coupe lorsqu'il entre en contact avec le matériau de la pièce pendant le processus d'usinage. Il représente la Vitesse à laquelle l'arête de coupe se déplace par rapport à la surface de la pièce à un moment donné pendant l'usinage.

V=2πωsr

Vitesse absolue pour la masse de la plaque de frappe fluide

La Vitesse absolue de la masse de la plaque de frappe de fluide peut être définie comme la Vitesse linéaire uniforme commune de divers composants d'un système physique, par rapport à l'espace absolu.

Vabsolute=(mfGγfAJet)+v

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

Copied!