Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitskoeffizient

Die Geschwindigkeitskoeffizientenformel ist definiert als das Verhältnis der tatsächlichen AustrittsGeschwindigkeit zum Verhältnis der idealen AustrittsGeschwindigkeit.

Cv=CactCideal

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten

Das Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.

ϕ=Vrcos(θ)

Geschwindigkeitspotential für den 2D-Quellenfluss

Die Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.

ϕ=Λ2πln(r)

Geschwindigkeit der Schallwelle bei gegebenem Volumenmodul

Die Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.

C=Kρa

Geschwindigkeit der Schallwelle unter Verwendung eines isothermen Prozesses

Die Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.

C=Rc

Geschwindigkeit der Schallwelle unter Verwendung des adiabatischen Prozesses

Die Geschwindigkeit einer Schallwelle hängt bei einem adiabatischen Prozess vom Adiabatenindex (Verhältnis der spezifischen Wärmekapazitäten), der universellen Gaskonstante, der absoluten Temperatur des Gases und der Molmasse des Gases ab.

C=yRc

Geschwindigkeit der Schallwelle bei gegebener Machzahl für komprimierbare Flüssigkeitsströmung

Die Geschwindigkeit der Schallwelle bei gegebener Mach-Zahl für kompressible Flüssigkeitsströmungen gibt die Geschwindigkeit an, mit der sich Schall durch das Medium ausbreitet, relativ zur SchallGeschwindigkeit in diesem Medium. Diese Beziehung ist von grundlegender Bedeutung in der Aerodynamik, der Luft- und Raumfahrttechnik und der Akustik, wo die Mach-Zahl das Strömungsregime charakterisiert und das Verhalten von Stoßwellen und Schallübertragung beeinflusst.

C=VM

Geschwindigkeit für die Wellenlänge der Welle

Die Formel zur Berechnung der Geschwindigkeit für die Wellenlänge einer Welle ist definiert als die Geschwindigkeit, mit der sich die Welle durch ein Medium ausbreitet, berechnet als Produkt ihrer Frequenz und Wellenlänge.

C=(λf)

Geschwindigkeit der Schallwelle

Die Formel zur Berechnung der SchallwellenGeschwindigkeit wird als Geschwindigkeit definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=20.05T

Geschwindigkeit der Schallwelle gegeben Schallintensität

Die Geschwindigkeit einer Schallwelle wird bei gegebener Schallintensitätsformel als Tempo definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=Prms2Iρ

Geschwindigkeit am Einlass für die Masse des Fluids, das pro Sekunde auf die Leitschaufel auftrifft

Die Geschwindigkeit am Einlass für die Masse des auf die Leitschaufel auftreffenden Fluids pro Sekunde ist die Änderungsrate ihrer Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

v=mfGγfAJet

Geschwindigkeit in Tiefe 1 bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe1 ist nach der Formel „Absolute Geschwindigkeit der Welle, die sich nach rechts bewegt“ als die resultierende Geschwindigkeit in einer bestimmten Tiefe aufgrund der Kombination von Welle und horizontaler Bewegung definiert.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Geschwindigkeit in Tiefe2 bei gegebener absoluter Geschwindigkeit der Wellen, die sich nach rechts bewegen

Die Geschwindigkeit in Tiefe 2 ist nach der Formel „Absolute Geschwindigkeit der Wellen, die sich nach rechts bewegen“ als die resultierende Geschwindigkeit in Tiefe 2 unter Berücksichtigung der Wellenbewegung definiert.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Geschwindigkeit in Tiefe 1 bei absoluter AnstiegsGeschwindigkeit, wenn der Fluss vollständig gestoppt ist

Die Geschwindigkeit in Tiefe 1, wenn die Formel „Absolute SchwallGeschwindigkeit bei vollständig gestopptem Fluss“ definiert ist, ist als anfängliche WasserGeschwindigkeit während eines abrupten Stopps definiert.

VNegativesurges=vabs(D2-h 1)h 1

Geschwindigkeit der Welle in Wellen

Die Formel für die WellenGeschwindigkeit in Wellen ist definiert als die Addition zur normalen WasserGeschwindigkeit von Kanälen in offener Kanalströmung.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit der Welle bei gegebener Geschwindigkeit in Tiefe1

Die Formel „WellenGeschwindigkeit bei gegebener Geschwindigkeit in der Tiefe“1 ist definiert als die Höhe der Strömungsänderung, die im Kanal auftritt.

Cw=VNegativesurges([g](D2+h 1)2h 1Hch)

Geschwindigkeit in Tiefe 1, wenn die Höhe des Schwalls für die Schwallhöhe eine vernachlässigbare Fließtiefe ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe für die Schwallhöhe vernachlässigbar ist. Die Formel für die Strömungstiefe ist als Geschwindigkeit des Strömungsschwalls an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Geschwindigkeit der Welle bei gegebener Schwallhöhe, da die Schwallhöhe eine vernachlässigbare Strömungstiefe ist

Die Geschwindigkeit der Welle bei gegebener Schwallhöhe für Schwallhöhe ist vernachlässigbar. Die Formel für die Tiefe der Strömung ist definiert als plötzliche Änderungen in der Strömung.

Cw=Hch[g]VNegativesurges

Geschwindigkeit der Welle bei gegebener absoluter Geschwindigkeit von Überspannungen

Die Wellenschnelligkeit bei absoluter StoßGeschwindigkeit ist definiert als plötzliche Änderungen der Strömung durch Stoßwellen.

Cw=vabs-vm

Geschwindigkeit der Einzelwelle

Die Geschwindigkeit der Einzelwelle ist definiert als die Geschwindigkeit, mit der sich eine einzelne Welle fortbewegt oder "ausbreitet". Bei einer Tiefwasserwelle ist die Geschwindigkeit direkt proportional zur Wellenperiode.

C=[g](Hw+Dw)

Geschwindigkeitskoeffizient bei gegebener Düseneffizienz

Geschwindigkeitskoeffizient bei gegebener Düseneffizienzformel ist definiert als das Verhältnis der tatsächlichen Geschwindigkeit des aus einer Düse austretenden Gases zur unter idealen Bedingungen berechneten Geschwindigkeit.

Cv=ηnozlze

Geschwindigkeitskonstante für die Reaktion erster Ordnung für Pfropfenströmung oder für unendliche Reaktoren

Die Formel für die Geschwindigkeitskonstante für die Reaktion erster Ordnung für Pfropfenströmung oder für unendliche Reaktoren ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der Geschwindigkeit für die Reaktion erster Ordnung und der ersten Potenz der Konzentration eines der Reaktanten angibt.

k'=(1𝛕p)ln(CoC)

Geschwindigkeitskonstante für die Reaktion erster Ordnung in Behälter i

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung in der Formel von Behälter i ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der Geschwindigkeit für die Reaktion erster Ordnung und der ersten Konzentrationskraft eines der Reaktanten angibt.

k'=C i-1-CiCi𝛕i

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitsverhältnis des Verbundgetriebes

Das Übersetzungsverhältnis eines zusammengesetzten Getriebes ist das Produkt der Übersetzungsverhältnisse jedes Zahnradpaars im Getriebe. Es wird durch Multiplikation der einzelnen Übersetzungsverhältnisse berechnet, wobei jedes Übersetzungsverhältnis das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads ist.

i=PdP'd

Geschwindigkeit eines kleinen Elements für Querschwingungen

Die Formel für die Geschwindigkeit kleiner Elemente bei Querschwingungen ist definiert als Maß für die Geschwindigkeit eines kleinen Elements bei einer Querschwingung, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Bewegung von Partikeln bei Längs- und Querschwingungen verwendet.

vs=(3lx2-x3)Vtraverse2l3

Geschwindigkeit bei jedem gegebenen Radius des Rohrs und maximale Geschwindigkeit

Geschwindigkeit bei jedem Radius bei gegebenem Rohrradius und MaximalGeschwindigkeit hängt von der MaximalGeschwindigkeit und dem Rohrradius ab. Die Geschwindigkeitsverteilung variiert normalerweise mit dem Radius und folgt oft einem bestimmten Profil, abhängig von den Strömungsbedingungen.

V=Vm(1-(rpdo2)2)

Geschwindigkeit der Kugel bei der Widerstandsmethode der fallenden Kugel

Die Geschwindigkeit der Kugel in der Formel der Widerstandsmethode für fallende Kugeln ist unter Berücksichtigung der Viskosität von Flüssigkeit oder Öl, des Kugeldurchmessers und der Widerstandskraft bekannt.

U=FD3πμd

Geschwindigkeitspotential für 2D-Dublettströmung

Die Formel für das Geschwindigkeitspotenzial für eine 2D-Dublettströmung stellt das Geschwindigkeitspotenzial für eine 2D-Dublettströmung dar. Sie zeigt an, dass es umgekehrt proportional zur Entfernung vom Dublett ist und mit dem Winkel variiert.

ϕ=κ2πrcos(θ)

Geschwindigkeitspotential für 2D-Wirbelströmung

Die Formel für das Geschwindigkeitspotential für eine zweidimensionale Wirbelströmung ist als Funktion des Polarwinkels und der Stärke der Wirbelströmung definiert. Sie beschreibt die durch einen Wirbel verursachte Strömung, bei der das Geschwindigkeitspotential linear mit der Winkelkoordinate abnimmt.

ϕ=-(γ2π)θ

Geschwindigkeit planen

Die ZeitplanGeschwindigkeitsformel ist definiert als das Verhältnis der zwischen zwei Stopps zurückgelegten Strecke zur Gesamtzeit des Laufs einschließlich der Stoppzeit (Planungszeit).

Vs=DTrun+Tstop

Geschwindigkeit des Gasmoleküls bei gegebener Kraft

Die Geschwindigkeit des Gasmoleküls gegebene Kraftformel ist definiert als die Quadratwurzel des Produkts der Länge des rechteckigen Kastens und der Kraft pro Masse des Teilchens.

uF=FLm

Geschwindigkeit des Gasmoleküls in 1D bei gegebenem Druck

Die Geschwindigkeit des Gasmoleküls in der 1D gegebenen Druckformel ist definiert als unter der Wurzel des Verhältnisses des Gasdrucks multipliziert mit dem Volumen mit der Masse des Partikels.

up=PgasVboxm

Geschwindigkeit des Körpers bei gegebenem Impuls

Die Formel für die Geschwindigkeit eines Körpers bei gegebenem Impuls ist definiert als Maß für die Geschwindigkeit eines Objekts in eine bestimmte Richtung. Sie wird berechnet, indem der Impuls des Objekts durch seine Masse geteilt wird. Sie liefert ein grundlegendes Konzept zum Verständnis der Bewegung eines Objekts und ihrer Beziehung zur Kraft.

v=pmo

Geschwindigkeit der Impulsänderung bei gegebener Beschleunigung und Masse

Die Formel zur Änderungsrate des Impulses bei gegebener Beschleunigung und Masse ist definiert als ein Maß für die Rate, mit der sich der Impuls eines Objekts ändert, wenn auf es eine externe Kraft einwirkt, wobei die Masse des Objekts und seine Beschleunigung die Hauptfaktoren sind, die diese Änderung beeinflussen.

rm=moa

Geschwindigkeit des Projektils des Mach-Kegels im komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit des Projektils eines Mach-Kegels in einer kompressiblen Flüssigkeitsströmung beschreibt die Geschwindigkeit, mit der sich das Projektil bewegt, wenn es die SchallGeschwindigkeit im umgebenden Medium erreicht oder überschreitet. Das Verständnis dieser Geschwindigkeit ist in der Aerodynamik und Ballistik von entscheidender Bedeutung, da sie den Beginn von Stoßwellen und die aerodynamischen Herausforderungen anzeigt, die mit Überschall- und Hyperschallflügen verbunden sind.

V=Csin(μ)

Geschwindigkeit der Schallwelle unter Berücksichtigung des Mach-Winkels in einem komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit von Schallwellen unter Berücksichtigung des Mach-Winkels bei kompressibler Fluidströmung ist wichtig für das Verständnis, wie sich Schall durch ein Medium ausbreitet, wenn die FluidGeschwindigkeit die SchallGeschwindigkeit erreicht oder überschreitet. Diese Beziehung hilft bei der Vorhersage des Verhaltens von Stoßwellen und der Schallübertragung in verschiedenen Umgebungen und ist von wesentlicher Bedeutung in der Luft- und Raumfahrttechnik, der Akustik und der Untersuchung der HochGeschwindigkeitsfluiddynamik.

C=Vsin(μ)

Geschwindigkeitskonstante bei gegebenem Sauerstoffäquivalent

Die Geschwindigkeitskonstante der Formel zum Sauerstoffäquivalent wird als Oxidationsrate organischer Stoffe definiert und hängt von der Art der organischen Stoffe und der Temperatur ab.

Kh=c-log(Lt,e)t

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante in der Formel zur Sauerstoffentzugskonstante wird als Oxidationsrate organischer Stoffe definiert. Sie hängt von der Temperatur und der Art der im Abwasser vorhandenen organischen Stoffe ab.

K=KD0.434

Geschwindigkeit der Flüssigkeit bei gegebenem Schub, der senkrecht zur Platte ausgeübt wird

Die Geschwindigkeit des Fluids bei gegebenem Schub, der senkrecht zur Platte ausgeübt wird, ist definiert als die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

vjet=Fp[g]γfAJet(sin(∠D))

Geschwindigkeit der Flüssigkeit bei gegebenem Schub parallel zum Strahl

Die Geschwindigkeit des Fluids bei gegebenem Schub parallel zum Strahl ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

vjet=FX[g]γfAJet(sin(∠D))2

Geschwindigkeit der Flüssigkeit bei gegebenem Schub normal zum Strahl

Die Geschwindigkeit des Fluids bei gegebenem Schub normal zum Jet ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und eine Funktion der Zeit.

vjet=FY[g]γfAJet(sin(∠D))cos(∠D)

Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche

Die Formel für die Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche ist definiert als die Bestimmung der Geschwindigkeit des Wassers an der Oberfläche eines Gewässers basierend auf der auf die Wasseroberfläche ausgeübten Scherspannung. Scherspannung an der Wasseroberfläche wird typischerweise durch Wind oder andere Kräfte erzeugt, die tangential auf die Oberfläche wirken. Es handelt sich um einen Geschwindigkeitsparameter an der Oberfläche, der das Strömungsprofil beeinflusst.

Vs=πτ2DFρwaterΩEsin(L)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!