Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsschwankungskoeffizient für Schwungrad

Die Formel für den Geschwindigkeitsschwankungskoeffizienten für Schwungräder ist als Maß für die Geschwindigkeitsschwankung eines Schwungrads definiert, bei dem es sich um ein rotierendes Rad handelt, das Energie speichert und die Geschwindigkeitsschwankungen eines Motors oder einer anderen Maschine ausgleicht.

Cs=2ω1-ω2ω1+ω2

Geschwindigkeit der progressiven Welle

Die Formel zur Geschwindigkeit fortschreitender Wellen ist definiert als Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie beschreibt die Rate der Störungsübertragung in einem physikalischen System und ist ein grundlegendes Konzept zum Verständnis der Wellendynamik und ihrer Anwendungen in verschiedenen Bereichen der Physik.

Vw=λTW

Geschwindigkeit der progressiven Welle unter Verwendung der Frequenz

Die Geschwindigkeit fortschreitender Wellen wird mithilfe der Frequenzformel als Maß für die Geschwindigkeit definiert, mit der sich eine Welle durch ein Medium ausbreitet. Dies ist für das Verständnis verschiedener physikalischer Phänomene wie Schallwellen, Lichtwellen und seismischer Wellen von wesentlicher Bedeutung und spielt in Bereichen wie Physik, Ingenieurwesen und Geologie eine entscheidende Rolle.

Vw=λfw

Geschwindigkeit einer progressiven Welle bei gegebener Winkelfrequenz

Die Formel für die Geschwindigkeit einer fortschreitenden Welle bei gegebener Winkelfrequenz ist definiert als Maß für die Geschwindigkeit einer Welle, die sich in eine bestimmte Richtung bewegt, beeinflusst durch die Winkelfrequenz, und ist von entscheidender Bedeutung für das Verständnis des Verhaltens von Wellen in verschiedenen physikalischen Systemen, einschließlich Schall- und Lichtwellen.

Vw=λωf2π

Geschwindigkeit der Welle bei gegebener Wellennummer

Die Formel zur Berechnung der WellenGeschwindigkeit bei gegebener Wellenzahl ist ein Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie bietet Aufschluss über die Frequenz und Wellenlänge der Welle und ist von entscheidender Bedeutung für das Verständnis verschiedener physikalischer Phänomene, wie etwa Schall- und Lichtwellen, in der Physik und in technischen Anwendungen.

Vw=ωfk

Geschwindigkeit für gegebene Wenderate bei hohem Lastfaktor

Die Geschwindigkeit für eine bestimmte Wenderate bei hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Wenderate bei hohem Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um die Manövrierfähigkeit von Flugzeugen zu optimieren.

v=[g]nω

Geschwindigkeit in Abschnitt 1 für stetigen Fluss

Die Formel „Geschwindigkeit in Abschnitt 1 für stetigen Fluss“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u01=QAcsρ1

Geschwindigkeit in Abschnitt 2 bei gegebenem Durchfluss in Abschnitt 1 für stetigen Durchfluss

Die Geschwindigkeit in Abschnitt 2 bei gegebener Strömung in Abschnitt 1 für die Formel „Steady Flow“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u02=QAcsρ2

Geschwindigkeit am Abschnitt für die Entladung durch den Abschnitt für eine stationäre inkompressible Flüssigkeit

Die Geschwindigkeit am Abschnitt für den Austritt durch den Abschnitt für stationäres inkompressibles Fluid ist als StrömungsGeschwindigkeit in der Querschnittsfläche definiert.

uFluid=QAcs

Geschwindigkeit des Gasmoleküls bei gegebener Kraft

Die Geschwindigkeit des Gasmoleküls gegebene Kraftformel ist definiert als die Quadratwurzel des Produkts der Länge des rechteckigen Kastens und der Kraft pro Masse des Teilchens.

uF=FLm

Geschwindigkeit des Gasmoleküls in 1D bei gegebenem Druck

Die Geschwindigkeit des Gasmoleküls in der 1D gegebenen Druckformel ist definiert als unter der Wurzel des Verhältnisses des Gasdrucks multipliziert mit dem Volumen mit der Masse des Partikels.

up=PgasVboxm

Geschwindigkeit des Körpers bei gegebenem Impuls

Die Formel für die Geschwindigkeit eines Körpers bei gegebenem Impuls ist definiert als Maß für die Geschwindigkeit eines Objekts in eine bestimmte Richtung. Sie wird berechnet, indem der Impuls des Objekts durch seine Masse geteilt wird. Sie liefert ein grundlegendes Konzept zum Verständnis der Bewegung eines Objekts und ihrer Beziehung zur Kraft.

v=pmo

Geschwindigkeit der Impulsänderung bei gegebener Beschleunigung und Masse

Die Formel zur Änderungsrate des Impulses bei gegebener Beschleunigung und Masse ist definiert als ein Maß für die Rate, mit der sich der Impuls eines Objekts ändert, wenn auf es eine externe Kraft einwirkt, wobei die Masse des Objekts und seine Beschleunigung die Hauptfaktoren sind, die diese Änderung beeinflussen.

rm=moa

Geschwindigkeit des Projektils des Mach-Kegels im komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit des Projektils eines Mach-Kegels in einer kompressiblen Flüssigkeitsströmung beschreibt die Geschwindigkeit, mit der sich das Projektil bewegt, wenn es die SchallGeschwindigkeit im umgebenden Medium erreicht oder überschreitet. Das Verständnis dieser Geschwindigkeit ist in der Aerodynamik und Ballistik von entscheidender Bedeutung, da sie den Beginn von Stoßwellen und die aerodynamischen Herausforderungen anzeigt, die mit Überschall- und Hyperschallflügen verbunden sind.

V=Csin(μ)

Geschwindigkeit der Schallwelle unter Berücksichtigung des Mach-Winkels in einem komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit von Schallwellen unter Berücksichtigung des Mach-Winkels bei kompressibler Fluidströmung ist wichtig für das Verständnis, wie sich Schall durch ein Medium ausbreitet, wenn die FluidGeschwindigkeit die SchallGeschwindigkeit erreicht oder überschreitet. Diese Beziehung hilft bei der Vorhersage des Verhaltens von Stoßwellen und der Schallübertragung in verschiedenen Umgebungen und ist von wesentlicher Bedeutung in der Luft- und Raumfahrttechnik, der Akustik und der Untersuchung der HochGeschwindigkeitsfluiddynamik.

C=Vsin(μ)

Geschwindigkeit für auf die Platte ausgeübte Kraft in Strömungsrichtung des Strahls

Die Geschwindigkeit der auf die Platte in Strömungsrichtung des Strahls ausgeübten Kraft ist die Änderungsrate ihrer Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

vjet=Fjet[g]γfAJet(1+cos(θt))

Geschwindigkeit der vom Strahl auf die Leitschaufel ausgeübten Kraft in x-Richtung

Die KraftGeschwindigkeit, die vom Strahl auf die Leitschaufel in x-Richtung ausgeübt wird, ist die Änderungsrate ihrer Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vjet=FxgγfAJet(cos(θ)+cos(∠D))

Geschwindigkeit gegebene Kraft, die von Jet auf Vane in Y-Richtung ausgeübt wird

Die Geschwindigkeit bei gegebener Kraft, die der Strahl auf die Schaufel in Y-Richtung ausübt, ist definiert als die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und ist eine Funktion der Zeit.

vjet=FygγfAJet((sin(θ))-sin(∠D))

Geschwindigkeit in der Tiefe bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe, gegeben durch die Formel „Absolute Geschwindigkeit des Schwalls, der sich nach rechts bewegt“, ist definiert als die resultierende Geschwindigkeit der Flüssigkeitspartikel, die für die Schwallbewegung verantwortlich sind.

VNegativesurges=(vabs(h 1-D2))+(V2D2)h 1

Geschwindigkeit der Welle bei zwei Tiefen

Die Geschwindigkeit der Welle bei zwei Tiefen ist definiert als die Addition der normalen WasserGeschwindigkeit der Kanäle im offenen Kanalfluss.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit in Tiefe 1, wenn die Schwallhöhe vernachlässigbar ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe vernachlässigbar ist, wird als Geschwindigkeit des Strömungsstoßes an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Geschwindigkeit der Welle bei ungleichmäßiger Strömung

Die Formel „WellenGeschwindigkeit bei ungleichmäßiger Strömung“ ist definiert als die Geschwindigkeit der Wellenausbreitung bei unterschiedlichen Strömungsbedingungen.

Cw=[g]h 1(1+1.5(Hchh 1)+0.5(Hchh 1)(Hchh 1))

Geschwindigkeit der Welle aus der Geschwindigkeitsgleichung von Lagrange

Die WellenGeschwindigkeit aus Lagranges Geschwindigkeitsgleichungsformel ist definiert als plötzliche Änderungen der Strömungstiefe, die zusätzlich zur normalen WasserGeschwindigkeit der Kanäle eine Geschwindigkeit (WellenGeschwindigkeit) in der Strömung erzeugen.

Cw=[g]h 1

Geschwindigkeit der Schleifpartikel

Die Geschwindigkeit von Schleifpartikeln bezeichnet die Geschwindigkeit, mit der sich diese Partikel bei abrasiven Bearbeitungsprozessen wie Abrasive Jet Machining (AJM) oder Schleifen auf die Werkstückoberfläche zubewegen. Dies ist ein kritischer Parameter, da er die Materialabtragsrate, die Schneidleistung und die Oberflächengüte direkt beeinflusst.

V=(ZwA0Ndmean3(ρ12hb)34)23

Geschwindigkeit der größeren Riemenscheibe gegebene Geschwindigkeit der kleineren Riemenscheibe

Drehzahl der größeren Scheibe bei gegebener Drehzahl der kleineren Scheibe ist definiert als die Drehzahl, mit der sich die größere Scheibe des Riementriebs dreht.

n2=d(n1D)

Geschwindigkeitsverhältnis von Kettenantrieben

Die Formel für das Geschwindigkeitsverhältnis von Kettenantrieben ist definiert als das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads in einem Kettenantriebssystem, das die Geschwindigkeit der Ausgangswelle im Verhältnis zur Eingangswelle bestimmt.

i=N1N2

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(11-XA Batch)

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für die Pfropfenströmungsformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(Co BatchCBatch)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k''=(1𝛕BatchCo Batch)(XA Batch1-XA Batch)

Geschwindigkeit eines langsamen Fahrzeugs mit OSD

Die Geschwindigkeit eines langsamen Fahrzeugs unter Verwendung von OSD wird verwendet, um die Geschwindigkeit des Fahrzeugs zu ermitteln, das von einem sich schnell bewegenden Fahrzeug überholt werden muss, wenn OSD gegeben wird.

Vb=OSD-VT-2ltr+T+1.4

Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach der Kollision

Die Formel für die Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach einer Kollision ist definiert als Maß für die Geschwindigkeit eines Insassen im Verhältnis zum Fahrzeug nach einer Kollision. Sie ist von entscheidender Bedeutung für die Einschätzung der Schwere des Aufpralls und der daraus resultierenden Verletzungen.

Vr=Voδoccd

Geschwindigkeitsausbreitung in einer verlustfreien Leitung

Die Formel für die Geschwindigkeitsausbreitung in einer verlustfreien Leitung ist umgekehrt proportional zur Quadratwurzel des Produkts aus Serieninduktivität und Serienkapazität einer Leitung.

Vp=1lc

Geschwindigkeit im beschleunigten Flug

Die Geschwindigkeit im beschleunigten Flug bezieht sich auf die Geschwindigkeit des Flugzeugs, wenn es Geschwindigkeits- oder Richtungsänderungen durchläuft, um bestimmte Flugziele zu erreichen. Sie wird normalerweise als LuftGeschwindigkeit des Flugzeugs gemessen, d. h. die Geschwindigkeit des Flugzeugs im Verhältnis zur umgebenden Luft.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei gegebener variabler Zeitformel ist definiert als zurückgelegte Strecke pro Zeiteinheit.

Smph=Hft+Rft88Tv

Geschwindigkeit beim Hin- und Rücktransport in Kilometer pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Transport und bei der Rückfahrt in Kilometern pro Stunde bei gegebener variabler Zeit ist definiert als die Geschwindigkeit, wenn wir vorher Informationen über die Rück- und Transportdistanz haben.

Skmph=hm+Rmeter16.7Tv

Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens im Dash-Pot

Die Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens in der Stoßdämpferformel ist unter Berücksichtigung des Gewichts, der Länge und des Durchmessers des Kolbens, der Viskosität der Flüssigkeit oder des Öls und des Spiels zwischen dem Stoßdämpfer und dem Kolben bekannt.

V=4WbC33πLdp3μ

Geschwindigkeitsverteilung in rauer turbulenter Strömung

Die Formel für die Geschwindigkeitsverteilung in rauer turbulenter Strömung ist als die Funktion definiert, die beschreibt, wie molekulare Geschwindigkeiten im Durchschnitt in einer rauen, turbulenten Strömung verteilt sind.

v=5.75vshearlog10(30yks)

Geschwindigkeit des beweglichen Bootes

Die Formel für die Geschwindigkeit eines fahrenden Bootes ist als Strömungsmesser vom Propellertyp definiert, der sich frei um eine vertikale Achse bewegen kann und in einem Boot mit einer bestimmten Geschwindigkeit gezogen wird.

vb=Vcos(θ)

Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen

Die Formel für die Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen ist definiert als die kombinierte Bewegung des Bootes relativ zum Wasser und die Bewegung des Wassers relativ zum Ufer.

vb=WΔt

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen nullter Ordnung

Die Geschwindigkeitskonstante durch Titrationsmethode für die Reaktionsformel nullter Ordnung ist definiert als die Geschwindigkeitskonstante, die direkt proportional zur Volumendifferenz und umgekehrt proportional zum Zeitpunkt der Fertigstellung ist.

k=V0-Vtt

Geschwindigkeitskonstante für dasselbe Produkt durch Titrationsmethode für Reaktionen zweiter Ordnung

Die Ratenkonstante für dasselbe Produkt durch Titrationsverfahren für die Reaktionsformel zweiter Ordnung ist definiert als die Subtraktion des Kehrwerts des Anfangsvolumens und des Zeitintervalls vom Kehrwert des Volumens eines Reaktanten zum Zeitpunkt t und Zeitintervall.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Geschwindigkeitsgradient gegebener Druckgradient am zylindrischen Element

Der Geschwindigkeitsgradient wird durch die Formel für den Druckgradienten am zylindrischen Element als Geschwindigkeitsvariation in Bezug auf den Rohrradius definiert.

VG=(12μ)dp|drdradial

Geschwindigkeit an jedem Punkt im zylindrischen Element

Die Geschwindigkeit an jedem Punkt in der Formel für das zylindrische Element wird als Rate definiert, mit der Flüssigkeit in das Rohr eindringt und ein parabolisches Profil bildet.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Geschwindigkeit am Auslass der Düse für maximalen Flüssigkeitsdurchfluss

Die Geschwindigkeit am Düsenauslass für die maximale Durchflussrate der Flüssigkeit ist entscheidend für die Bestimmung der Effizienz und Leistung von Fluiddynamiksystemen. Sie korreliert direkt mit dem Druckverhältnis über der Düse, der Flüssigkeitsdichte und den Düsendesignmerkmalen und beeinflusst die Durchflussrate und Antriebseffizienz in Anwendungen wie Raketentriebwerken und industriellen Sprühsystemen. Das Verständnis und die Optimierung dieser Geschwindigkeit ist für das Erreichen der gewünschten Betriebsergebnisse in technischen und technologischen Anwendungen von entscheidender Bedeutung.

Vf=2yP1(y+1)ρa

Geschwindigkeit durch Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit durch das Sieb, gegeben durch den Druckverlust durch das Sieb, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

v=(hL0.0729)+u2

Geschwindigkeit über Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit über dem Bildschirm, gegeben durch den Druckverlust durch den Bildschirm, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=v2-(hL0.0729)

Geschwindigkeit bei gegebener Länge

Die Geschwindigkeit bei gegebener Länge ist als beizubehaltende FahrzeugGeschwindigkeit definiert, wenn eine Beschleunigungsrate und eine Änderung des Gradienten der vertikalen Kurve bereitgestellt werden.

V=Lc100fg1-(g2)

Geschwindigkeit des Strahls bei dynamischem Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls bei dynamischem Schub, der durch den Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet-Vabsolute)

Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels

Die Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels, der sich um die Achse dreht, ist die Anzahl der Umdrehungen des Objekts dividiert durch die Zeit, angegeben als Umdrehungen pro Minute (U/min).

Ω=vtangential602πrO

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Einlass auf Leitschaufeln auftrifft

Die Geschwindigkeit bei gegebenem Tangentialimpuls eines Fluids, das Schaufeln am Einlass eines Objekts trifft, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!