Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad media en RPM

La fórmula de Velocidad media en RPM se define como la Velocidad de rotación promedio de un volante o un eje giratorio en un sistema mecánico, generalmente medida en revoluciones por minuto, que es un parámetro crítico en el análisis de los diagramas de momentos de giro y el rendimiento del volante.

N=N1+N22

Velocidad de onda progresiva

La fórmula de Velocidad de onda progresiva se define como una medida de la Velocidad a la que una onda se propaga a través de un medio, describe la tasa de transmisión de perturbaciones en un sistema físico y es un concepto fundamental para comprender la dinámica de las ondas y sus aplicaciones en diversos campos de la física. .

Vw=λTW

Velocidad del motor dada la eficiencia en el motor de inducción

Velocidad del motor dada La eficiencia en el motor de inducción es la Velocidad a la que gira el rotor y la Velocidad síncrona es la Velocidad del campo magnético del estator en el motor de inducción trifásico.

Nm=ηNs

Velocidad síncrona del motor de inducción dada la eficiencia

Velocidad síncrona del motor de inducción dada La eficiencia es la Velocidad del campo magnético del estator en el motor de inducción trifásico y la Velocidad del motor es la Velocidad a la que gira el rotor.

Ns=Nmη

Velocidad de onda progresiva usando frecuencia

La Velocidad de la onda progresiva utilizando la fórmula de frecuencia se define como una medida de la Velocidad a la que una onda se propaga a través de un medio, lo cual es esencial para comprender diversos fenómenos físicos, como ondas sonoras, ondas de luz y ondas sísmicas, y es crucial en los campos. como física, ingeniería y geología.

Vw=λfw

Velocidad de onda progresiva dada frecuencia angular

La fórmula de Velocidad de onda progresiva dada la frecuencia angular se define como una medida de la Velocidad de una onda que se mueve en una dirección específica, influenciada por la frecuencia angular, y es esencial para comprender el comportamiento de las ondas en varios sistemas físicos, incluidos el sonido y la luz. ondas.

Vw=λωf2π

Velocidad de la onda dado el número de onda

La fórmula de la Velocidad de onda dada el número de onda se define como una medida de la Velocidad a la que una onda se propaga a través de un medio, proporcionando información sobre la frecuencia y longitud de onda de la onda, y es esencial para comprender diversos fenómenos físicos, como las ondas de sonido y luz, en Aplicaciones de la física y la ingeniería.

Vw=ωfk

Velocidad longitudinal del extremo libre para vibración longitudinal

La fórmula de Velocidad longitudinal del extremo libre para vibración longitudinal se define como una medida de la Velocidad del extremo libre de un objeto sometido a vibración longitudinal, que está influenciada por la energía cinética y la masa del objeto restringido, lo que proporciona información sobre el efecto de la inercia en las vibraciones longitudinales y transversales.

Vlongitudinal=6KEmc

Velocidad de elemento pequeño para vibraciones transversales

La fórmula de Velocidad de un elemento pequeño para vibraciones transversales se define como una medida de la Velocidad de un elemento pequeño en una vibración transversal, que se ve afectada por la inercia de la restricción, y se utiliza para analizar el movimiento de partículas en vibraciones longitudinales y transversales.

vs=(3lx2-x3)Vtraverse2l3

Velocidad transversal del extremo libre

La fórmula de la Velocidad transversal del extremo libre se define como una medida de la Velocidad del extremo libre de un sistema vibratorio, influenciada por el efecto de la inercia de la restricción en las vibraciones longitudinales y transversales, proporcionando información sobre el comportamiento dinámico del sistema bajo diversas restricciones.

Vtraverse=280KE33mc

Velocidad angular de la molécula diatómica

La fórmula de la Velocidad angular de la molécula diatómica es una medida de la Velocidad de rotación. Se refiere al desplazamiento angular por unidad de tiempo. Una revolución es igual a 2 * pi radianes, por lo que la Velocidad angular (ω) es igual al producto de la frecuencia de rotación (f) y la constante 2pi {es decir, ω = 2 * pi * f}.

ω3=2πνrot

Velocidad angular dada la energía cinética

La fórmula de energía cinética de Velocidad angular dada es una ecuación de energía cinética general con la Velocidad de las partículas igual a su distancia desde el centro de masa multiplicada por la Velocidad angular del sistema (ω). La energía cinética del sistema, KE, es la suma de la energía cinética de cada masa que se escribe numéricamente como la mitad * masa * cuadrado de la Velocidad de un objeto dado.

ω3=2KE(m1(R12))+(m2(R22))

Velocidad de la aeronave a un régimen de ascenso dado

La Velocidad de la aeronave a una tasa de ascenso determinada es la Velocidad requerida para que una aeronave alcance una tasa de ascenso específica. Esta fórmula calcula la Velocidad dividiendo la Velocidad de ascenso por el seno del ángulo de la trayectoria de vuelo durante el ascenso. Comprender y aplicar esta fórmula es crucial para que los pilotos e ingenieros optimicen el rendimiento en ascenso.

v=RCsin(γ)

Velocidad de flujo uniforme para medio cuerpo Rankine

La Velocidad de flujo uniforme para el medio cuerpo de Rankine se refiere a la Velocidad de la corriente libre en el infinito, donde el flujo se acerca a la forma de medio cuerpo de Rankine. Esta forma es un modelo teórico en dinámica de fluidos donde se considera el flujo alrededor de una placa plana semiinfinita colocada en un campo de flujo uniforme.

U=q2y(1-∠Aπ)

Velocidad al nivel del mar dado el coeficiente de elevación

La Velocidad al nivel del mar dado el coeficiente de sustentación es una medida que calcula la Velocidad de un objeto al nivel del mar, teniendo en cuenta el peso corporal, la densidad del aire al nivel del mar, el área de referencia y el coeficiente de sustentación, proporcionando un parámetro crucial en aerodinámica y diseño de aeronaves. .

V0=2Wbody[Std-Air-Density-Sea]SCL

Velocidad en altitud

La Velocidad en altitud es una medida de la Velocidad de un objeto a una altura específica sobre la superficie de la Tierra, teniendo en cuenta el peso del cuerpo, la densidad del aire, el área de referencia y el coeficiente de sustentación, esta fórmula permite calcular la Velocidad en sistemas aerodinámicos. proporcionando conocimientos valiosos para ingenieros e investigadores en los campos de la aeroespacial y la aerodinámica.

Valt=2Wbodyρ0SCL

Velocidad a la altitud dada Velocidad al nivel del mar

Velocidad a la altitud dada La Velocidad al nivel del mar es una medida de la Velocidad de un objeto a una determinada altitud, calculada multiplicando la Velocidad al nivel del mar por la raíz cuadrada de la relación entre la densidad del aire estándar al nivel del mar y la densidad del aire. a la altitud dada.

Valt=V0[Std-Air-Density-Sea]ρ0

Velocidad en cualquier radio dado el radio de la tubería y la Velocidad máxima

La Velocidad en cualquier radio dado el radio de la tubería, y la Velocidad máxima está relacionada con la Velocidad máxima y el radio de la tubería. La distribución de Velocidades generalmente varía con el radio, y a menudo sigue un perfil específico según las condiciones del flujo.

V=Vm(1-(rpdo2)2)

Velocidad máxima en cualquier radio usando Velocity

La Velocidad máxima en cualquier radio utilizando la Velocidad en cualquier radio en un sistema giratorio ocurre cuando la fuerza centrípeta se equilibra con la fuerza máxima que se puede aplicar.

Vm=V1-(rpdo2)2

Velocidad de la esfera en el método de resistencia de la esfera descendente

La fórmula del método de resistencia a la Velocidad de la esfera en la caída de la esfera se conoce considerando la viscosidad del fluido o del aceite, el diámetro de la esfera y la fuerza de arrastre.

U=FD3πμd

Velocidad de giro para una carga alar determinada

La Velocidad de giro para una carga alar determinada se refiere a la Velocidad a la que una aeronave puede cambiar su dirección o girar; generalmente se mide en grados por segundo o radianes por segundo; Al combinar estos factores dados, la fórmula se aproxima a la Velocidad de giro, lo que ofrece información sobre las capacidades de maniobra de la aeronave.

ω=[g](ρCLn2WS)

Velocidad específica de succión

La fórmula de Velocidad específica de succión se define como un parámetro adimensional que caracteriza el rendimiento de succión de una bomba, proporcionando una medida relativa de la capacidad de la bomba para manejar un caudal y una altura determinados, lo que permite comparar diferentes diseños de bombas y su idoneidad para aplicaciones específicas.

Nsuc=ωQ(Hsv)34

Velocidad en la sección 1 de la ecuación de Bernoulli

La Velocidad en la sección 1 de la ecuación de Bernoulli se define como la Velocidad en una sección particular de la tubería.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Velocidad de flujo dada Carga de Velocidad para flujo constante no viscoso

La Velocidad de Flujo dada la Carga de Velocidad para Flujo Estable No Viscoso se define como una medida de la Velocidad del fluido en un punto particular y se define como la relación entre la Velocidad del fluido al cuadrado y el doble de la aceleración debida a la gravedad.

V=Vh2[g]

Velocidad del fluido para el número de Reynold

La fórmula de la Velocidad del fluido para el número de Reynold se conoce considerando la relación del número de Reynolds y la viscosidad del fluido con la densidad del líquido y la longitud de la placa.

V=ReμρfL

Velocidad de separación después del impacto

La fórmula de la Velocidad de separación después del impacto se define como el producto del coeficiente de restitución y la diferencia entre la Velocidad inicial del primer cuerpo y la Velocidad inicial del segundo cuerpo.

vsep=e(u1-u2)

Velocidad de aproximación

La fórmula de la Velocidad de aproximación se define como la relación entre la diferencia entre la Velocidad final del segundo cuerpo y la Velocidad final del primer cuerpo y el coeficiente de restitución.

vapp=v2-v1e

Velocidad transversal en amoladora de superficie de husillo horizontal y vertical dado MRR

La Velocidad transversal en la amoladora de superficie de husillo horizontal y vertical dada la MRR es un método para determinar el movimiento hacia adelante y hacia atrás de la mesa de trabajo en relación con la muela abrasiva cuando se conoce la cantidad de MRR requerida. La Velocidad transversal se determina según diferentes parámetros, como el acabado superficial deseado, el diferente tamaño de grano de la muela, etc.

Vtrav=Zwfdcut

Velocidad transversal para rectificadora cilíndrica e interna dado MRR

La Velocidad transversal para amoladora cilíndrica e interna dada MRR es un método para determinar el movimiento hacia adelante y hacia atrás de la mesa de trabajo en relación con la muela abrasiva cuando se conoce la cantidad de MRR requerida. La Velocidad transversal se determina según diferentes parámetros, como el acabado superficial deseado, el diferente tamaño de grano de la muela abrasiva, etc.

Utrav=ZwπfDm

Velocidad en cualquier punto del elemento cilíndrico

La Velocidad en cualquier punto de la fórmula del elemento cilíndrico se define como la Velocidad a la que el fluido ingresa a la tubería formando un perfil parabólico.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Velocidad en la salida de la boquilla para caudal máximo de fluido

La Velocidad en la salida de la boquilla para un caudal máximo de fluido es crucial para determinar la eficiencia y el rendimiento de los sistemas de dinámica de fluidos. Se correlaciona directamente con la relación de presión a través de la boquilla, la densidad del fluido y las características de diseño de la boquilla, lo que influye en el caudal y la eficiencia de la propulsión en aplicaciones como motores de cohetes y sistemas de pulverización industriales. Comprender y optimizar esta Velocidad es esencial para lograr los resultados operativos deseados en aplicaciones tecnológicas y de ingeniería.

Vf=2yP1(y+1)ρa

Velocidad en el drenaje dado el tiempo de flujo del canal

La fórmula de Velocidad en el drenaje dada la fórmula del tiempo de flujo del canal se define como la Velocidad del agua que fluye a través del drenaje.

V=LTm/f

Velocidad de la corriente libre dado el coeficiente de fricción local

La fórmula del coeficiente de fricción local dada la Velocidad de la corriente libre se define como la Velocidad de un fluido cuando está lejos de un límite o pared, sin verse afectado por la presencia de la pared, y es un parámetro crítico para comprender el comportamiento del flujo de fluido sobre una placa plana.

u=2τwρCfx

Velocidad de flujo de la corriente

La Velocidad de flujo de la corriente se define como el flujo de la corriente en la tubería a una tasa promedio en la tasa de flujo de descarga.

v=(γf4μ)dh/dx(Rinclined2-dradial2)

Velocidad máxima entre placas

La Velocidad máxima entre placas se define como la Velocidad máxima o pico en la línea central de las placas en el flujo de fluido.

Vmax=(w2)dp|dr8μ

Velocidad angular media del volante

La fórmula de la Velocidad angular media del volante se define como la Velocidad angular promedio de un volante, que es un dispositivo mecánico giratorio que almacena energía, y se utiliza para determinar la Velocidad de rotación del volante en un sistema mecánico, particularmente en el diseño de volantes.

ω=nmax+nmin2

Velocidad de corte dada la Velocidad del husillo

Velocidad de corte dada La Velocidad del husillo se define como la Velocidad con la que la herramienta de corte corta la pieza de trabajo expresada en m/min.

V=πDN

Velocidad de sedimentación dada la gravedad específica de la partícula

La fórmula de Velocidad de sedimentación dada la gravedad específica de la partícula se define como la Velocidad alcanzada por la partícula cuando cae a través de un fluido, dependiendo de su tamaño y forma, y de la diferencia entre su gravedad específica y la del medio de sedimentación.

Vsg=(43)g(G-1)DpCD

Velocidad promedio del gas dada la presión y la densidad en 2D

La Velocidad media del gas dada la presión y la densidad en 2D es la media aritmética de las Velocidades de las diferentes moléculas de un gas a una temperatura dada en 2 dimensiones.

vavg_P_D=πPgas2ρgas

Velocidad promedio del gas dada la Velocidad cuadrática media raíz en 2D

La Velocidad promedio del gas dada la Velocidad cuadrática media en 2D es la media aritmética de las Velocidades de diferentes moléculas de un gas a una temperatura dada en 2 dimensiones.

vavg_RMS=(0.8862CRMS_speed)

Velocidad promedio de gas dada la presión y el volumen en 2D

La Velocidad promedio del gas dada la presión y el volumen en 2D es la media aritmética de las Velocidades de diferentes moléculas de un gas a una temperatura dada en 2 dimensiones.

vavg_P_V=πPgasV2Mmolar

Velocidad promedio del gas dada la temperatura en 2D

La Velocidad promedio del gas dada la temperatura en 2D es la media aritmética de las Velocidades de diferentes moléculas de un gas a una temperatura dada en 2 dimensiones.

vavg_T=π[R]Tg2Mmolar

Velocidad cuadrática media de la molécula de gas dada la presión y el volumen de gas en 2D

La Velocidad cuadrática media de la molécula de gas dada la presión y el volumen de gas en la fórmula 2D se define como el cuadrado completo de la raíz cuadrada media de la molécula de gas en 2D.

CRMS_2D=2PgasVNmoleculesm

Velocidad más probable del gas dada la presión y la densidad en 2D

La Velocidad más probable del gas dada la presión y la densidad en la fórmula 2D se define como la relación entre la raíz cuadrada de la presión y la densidad del gas respectivo.

CP_D=Pgasρgas

Velocidad más probable del gas dada la presión y el volumen en 2D

La Velocidad más probable del gas dada la presión y el volumen en la fórmula 2D se define como la relación entre la raíz cuadrada de la presión y el volumen y la masa molar del gas en particular.

CP_V=PgasVMmolar

Velocidad óptima del husillo

La Velocidad óptima del husillo es fundamental para lograr procesos eficientes de mecanizado de metales. Los maquinistas suelen confiar en la experiencia, los datos empíricos, las recomendaciones del fabricante y las simulaciones de mecanizado para determinar la Velocidad óptima del husillo para aplicaciones de mecanizado específicas. El monitoreo y ajuste continuo de la Velocidad del husillo durante todo el proceso de mecanizado ayudan a mantener condiciones de corte óptimas y maximizar el rendimiento del mecanizado.

ωs=(Vs2πRo)((1+n)CtTref(1-Rw)(1-n)(Cttc+Ct)(1-Rw1+nn))n

Velocidad de corte de referencia dada la Velocidad óptima del husillo

La Velocidad de corte de referencia dada la Velocidad óptima del husillo se refiere a la Velocidad lineal deseada en un punto específico del filo de la herramienta cuando se acopla con la pieza de trabajo durante el mecanizado. Esta Velocidad de referencia se elige en función de factores como las propiedades del material, las herramientas y las condiciones de mecanizado, y sirve como objetivo para lograr un rendimiento de mecanizado óptimo.

Vs=ωs2πRo((1-n)(Cttc+Ct)(1-Rw1+nn)(1+n)CtTref(1-Rw))n

Velocidad absoluta para un empuje normal dado paralelo a la dirección del chorro

La Velocidad absoluta para un empuje normal paralelo a la dirección del chorro es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

Vabsolute=FtGγfAJet(∠D(180π))2+v

Velocidad del chorro con empuje normal paralelo a la dirección del chorro

La Velocidad del Chorro dado el Empuje Normal Paralelo a la Dirección del Chorro es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Velocidad absoluta para un empuje normal dado Normal a la dirección del chorro

La Velocidad absoluta para un empuje normal dado normal a la dirección del chorro es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

Vabsolute=(FtGγfAJet(∠D(180π))cos(θ))+v

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

Copied!