Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia cinetica in elettronvolt

La formula dell'Energia cinetica in elettronvolt è definita come l'Energia cinetica consumata dalla particella che viene misurata in elettroni volt.

Eatom_eV=-(13.66.2415063630941018)(Z)2(nquantum)2

Energia in elettronvolt

La formula dell'Energia in elettronvolt è definita come l'Energia potenziale consumata dalla particella misurata in elettronvolt.

KEphoton=(6.86.2415063630941018)(Z)2(nquantum)2

Energia totale in elettronvolt

La formula dell'Energia totale in elettronvolt è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata dal corpo mentre si sposta da un punto all'altro.

KEphoton=(6.86.2415063630941018)(Z)2(nquantum)2

Energia del fotone usando l'approccio di Einstein

L'Energia del fotone utilizzando l'approccio di Einstein è l'Energia trasportata da un singolo fotone. È indicato dal simbolo, E.

Efreq=[hP]νphoton

Energia di 1 Mole di Fotoni

L'Energia di 1 mole di fotoni è l'Energia che viene trasportata da un singolo fotone. È indicato dal simbolo, E.

Ephoton=[Avaga-no][hP]νphoton

Energia cinetica dei fotoelettroni

L'Energia cinetica dei fotoelettroni è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto a un altro.

KEphoton=[hP](νphoton-v0)

Energia del fotone nell'effetto fotoelettrico

L'Energia del fotone nell'effetto fotoelettrico è l'Energia di soglia totale o funzione di lavoro e l'Energia cinetica dei fotoni.

Ephoton_EEF=W+KE

Energia cinetica dell'elettrone dato il numero atomico

L'Energia cinetica dell'elettrone dato il numero atomico è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

Efreq=Z([Charge-e]2)2rorbit

Energia potenziale dell'elettrone data il numero atomico

L'Energia potenziale dell'elettrone dato il numero atomico è l'Energia immagazzinata in un elettrone a causa della sua posizione rispetto a una posizione zero.

PE=(-Z([Charge-e]2)rorbit)

Energia totale dell'elettrone data il numero atomico

L'Energia totale dell'elettrone dato il numero atomico è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto all'altro.

EeV_AN=-Z([Charge-e]2)2rorbit

Energia 1 di Livello Vibrazionale

La formula Energia 1 del livello vibrazionale è definita come sottrazione dell'Energia del fotone di transizione dall'Energia della materia a un livello superiore. La materia allo stato fondamentale assorbe la radiazione e raggiunge lo stato eccitato.

E1=E2-(f1,2[hP])

Energia 2 di Livello Vibrazionale

La formula Energia 2 del livello vibrazionale è definita come la somma dell'Energia della materia allo stato fondamentale con l'Energia del fotone di transizione. La materia raggiunge lo stato energetico superiore quando la materia assorbe Energia nello stato fondamentale.

E2=E1+(f1,2[hP])

Energia cinetica del sistema

L'Energia cinetica del sistema, KE, è la somma dell'Energia cinetica per ciascuna massa. L'Energia cinetica di un oggetto è l'Energia che possiede a causa del suo movimento. È definito come il lavoro necessario per accelerare un corpo di una data massa da fermo alla sua velocità dichiarata.

KE=(m1(v12))+(m2(v22))2

Energia di dissociazione del potenziale

L'Energia di dissociazione della formula potenziale è definita come l'Energia misurata dal fondo del potenziale per una molecola biatomica.

Dae=Evfvmax

Energia vibrazionale usando l'Energia di dissociazione

L'Energia vibrazionale che utilizza la formula dell'Energia di dissociazione è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

EDE=Devmax

Energia di dissociazione data il numero d'onda vibrazionale

La formula del numero d'onda vibrazionale data dall'Energia di dissociazione è definita come l'Energia che viene misurata dal fondo del potenziale dei livelli di Energia vibrazionale per una molecola biatomica.

De=ω'24xeω'

Energia vibrazionale utilizzando la costante di anarmonicità

L'Energia vibrazionale utilizzando la formula della costante di anarmonicità è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

Exe=(ω')24xeω'vmax

Energia di dissociazione del punto zero

La formula dell'Energia di dissociazione del punto zero è definita come l'Energia di dissociazione che viene misurata al punto zero dei livelli di Energia vibrazionale delle molecole biatomiche.

D0=De-E0

Energia di punto zero data l'Energia di dissociazione

L'Energia del punto zero data la formula dell'Energia di dissociazione è definita come l'Energia di vibrazione dei livelli energetici di una molecola biatomica.

E0=De-D0

Energia Punto Zero

La formula di Energia del punto zero è definita come l'Energia di una vibrazione dei livelli di Energia di una molecola biatomica.

E0=(12ω')-(14xeω')

Energia di dissociazione del potenziale utilizzando l'Energia di punto zero

L'Energia di dissociazione del potenziale usando la formula dell'Energia del punto zero è definita come l'Energia che viene misurata dal fondo del potenziale dei livelli di Energia vibrazionale per una molecola biatomica.

De=D0+E0

Energia di taglio specifica nella lavorazione

L'Energia di taglio specifica nella lavorazione è l'Energia consumata per rimuovere un volume unitario di materiale, che viene calcolata come il rapporto tra l'Energia di taglio E e il volume di rimozione del materiale V.

ps=PmZw

Energia potenziale nel limite di avvicinamento più vicino

L'Energia potenziale nel limite della formula di avvicinamento più vicino è definita come l'Energia che è immagazzinata in un oggetto in virtù della sua posizione.

PE Limit=-AR1R2(R1+R2)6r

Energia totale nei fluidi comprimibili

L'Energia totale nei fluidi comprimibili in qualsiasi sezione in un fluido in movimento è costituita dalla somma delle energie statiche, di velocità e potenziali interne in quella sezione.

E(Total)=KE+PE+Ep+Em

Energia cinetica data Energia totale nei fluidi comprimibili

L'Energia cinetica data l'Energia totale nei fluidi comprimibili è definita come Energia dell'oggetto quando si muove dallo stato di quiete al movimento. L'unità SI dell'Energia cinetica è il Joule.

KE=E(Total)-(PE+Ep+Em)

Energia potenziale data Energia totale nei fluidi comprimibili

L'Energia potenziale data dall'Energia totale nei fluidi comprimibili è l'Energia immagazzinata nell'oggetto a causa della sua posizione rispetto a una posizione zero.

PE=E(Total)-(KE+Ep+Em)

Energia di pressione data Energia totale nei fluidi comprimibili

L'Energia di pressione data dall'Energia totale nei fluidi comprimibili è l'Energia del fluido dovuta alla pressione applicata (forza per area).

Ep=E(Total)-(KE+PE+Em)

Energia molecolare data Energia totale nei fluidi comprimibili

L'Energia molecolare data dall'Energia totale nei fluidi comprimibili è definita come l'Energia in cui le molecole immagazzinano e trasportano Energia.

Em=E(Total)-(KE+PE+Ep)

Energia totale del sistema

L'Energia totale della formula del sistema è definita come somma di Energia cinetica, Energia potenziale ed Energia interna. Gli oggetti con Energia totale inferiore a zero sono vincolati; quelli con zero o maggiore sono illimitati.

Esystem=PE+KE+U

Energia potenziale elastica della molla

L'Energia potenziale elastica della molla definita come Energia immagazzinata come risultato dell'applicazione di una forza per deformare un oggetto elastico. L'Energia viene immagazzinata fino a quando la forza non viene rimossa.

U=12kx2

Energia libera di Gibbs data la superficie

La formula di Gibbs Free Energy Given Surface Area è definita come l'Energia libera di Gibbs di una superficie curva che è direttamente proporzionale all'area della superficie.

G=γA

Energia immagazzinata nel campo magnetico

La formula dell'Energia immagazzinata nel campo magnetico è definita come materiale magnetico o una carica elettrica in movimento in cui agisce la forza del magnetismo. Pertanto, quando un materiale è magnetizzato, assorbe Energia. Questa Energia è immagazzinata nel campo del magnete.

E=Bμ2

Energia cinetica netta dell'elettrone

La formula dell'Energia cinetica netta dell'elettrone è definita come la quantità totale di Energia che un elettrone possiede come risultato del suo movimento. È uguale alla differenza tra l'Energia cinetica dell'elettrone e la sua Energia potenziale.

Qe=Jc(2[BoltZ]Tc[Charge-e])

Energia minima richiesta dall'elettrone per lasciare il catodo

La formula dell'Energia minima richiesta dall'elettrone per lasciare il catodo è definita come l'Energia richiesta per lasciare il catodo.

Q=JcVc

Energia del punto zero della particella in SHO 1D

L'Energia del punto zero della particella nella formula 1D SHO è definita come l'Energia minima possibile che un oscillatore può possedere.

Z.P.E=0.5[h-]ω

Energia del punto zero della particella in SHO 2D

L'Energia del punto zero della particella nella formula SHO 2D è definita come l'Energia più bassa che una particella può avere in una SHO 2D.

Z.P.E=[h-]ω

Energia di propagazione utilizzando l'Energia superficiale specifica

L'Energia di Propagazione mediante la formula dell'Energia Superficie Specifica è definita come la barriera energetica che entra in gioco nel meccanismo di propagazione dopo la nucleazione, dove la superficie della parete aumenta fino a raggiungere il valore massimo πR2.

Ep=γπR2

Energia per unità di volume del cluster

La formula Energia per unità di volume del cluster è definita come la quantità di Energia immagazzinata in un dato sistema o regione di spazio per unità di volume.

Ev=avn

Energia richiesta per frantumare materiali grossolani secondo la legge di Bond

L'Energia richiesta per frantumare i materiali grossolani secondo la legge di Bond calcola l'Energia necessaria per frantumare le materie prime in modo tale che l'80% del prodotto passi attraverso un'apertura del setaccio del diametro del prodotto.

E=Wi((100d2)0.5-(100d1)0.5)

Energia termica consumata in evaporazione

L'Energia termica utilizzata nella formula di evaporazione è definita come l'Energia utilizzata per trasformare il liquido in vapore, quindi la temperatura non cambia durante questo processo.

He=ρwaterLEL

Energia interna per il flusso ipersonico

La formula dell'Energia interna per il flusso ipersonico è definita come l'Energia totale di un fluido in movimento a velocità molto elevate, che comprende sia l'Energia cinetica che quella potenziale, il che è fondamentale per comprendere il comportamento dei fluidi nei flussi ipersonici, in particolare nel contesto dei principi fondamentali del flusso viscoso.

U=H+Pρ

Energia cinetica totale di due corpi dopo l'impatto

L'Energia cinetica totale di due corpi dopo la formula dell'impatto è definita come la metà della somma del prodotto di massa, quadrato della velocità finale del primo corpo e massa, quadrato della velocità finale del secondo corpo.

KEf=(12)((m1(v12))+(m2(v22)))

Energia cinetica del gas 1 se è presente una miscela di gas

La formula dell'Energia cinetica del gas 1 se è presente una miscela di gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del secondo gas.

KE1=KE2(n1n2)(T1T2)

Energia cinetica del gas 2 se è presente una miscela di due gas

La formula dell'Energia cinetica del gas 2 se è presente una miscela di due gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del primo gas.

KE2=KE1(n2n1)(T2T1)

Energia interna usando entalpia, pressione e volume

L'Energia interna che utilizza la formula di entalpia, pressione e volume è definita come la differenza di entalpia e il prodotto di pressione e volume.

U=H-PVT

Energia libera di Helmholtz che utilizza l'Energia interna, la temperatura e l'entropia

L'Energia libera di Helmholtz che utilizza la formula di Energia interna, temperatura ed entropia è definita come la differenza di Energia interna e il prodotto di temperatura ed entropia.

A=U-TS

Energia interna usando l'Energia libera, la temperatura e l'entropia di Helmholtz

L'Energia interna che utilizza la formula dell'Energia libera, della temperatura e dell'entropia di Helmholtz è definita come la somma dell'Energia di Helmholtz e il prodotto della temperatura e dell'entropia.

U=A+TS

Energia per impurità

L'Energia per impurità è l'Energia necessaria affinché un'impurità occupi un punto del reticolo in un reticolo cristallino.

ΔE=-ln(f)[R]T

Energia effettivamente prodotta dato il fattore vegetale

L'Energia effettivamente prodotta dato il fattore di impianto è definita come il processo di generazione di Energia elettrica da fonti di Energia primaria.

E=pw

Energia massima prodotta utilizzando il fattore impianto

Il Maximum Energy Produced using Plant Factor è definito come il processo di generazione della massima potenza elettrica da fonti di Energia primaria.

w=Ep

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!