Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheid van geleidepoelie

De formule voor de Snelheid van de geleiderol wordt gedefinieerd als een maat voor de rotatieSnelheid van de geleiderol in een mechanisch systeem. Deze is cruciaal voor het bepalen van de beweging van het systeem, met name in de context van de bewegingskinetiek, waarbij de Snelheid van de geleiderol de algehele prestatie en efficiëntie van het systeem beïnvloedt.

NP=NDdd1

Snelheid van object in cirkelvormige beweging

De formule voor de Snelheid van een object in cirkelvormige beweging wordt gedefinieerd als de Snelheid waarmee een object langs een cirkelvormig pad beweegt, beïnvloed door de straal van de cirkel en de rotatiefrequentie, en biedt een fundamenteel concept voor het begrijpen van cirkelvormige beweging en de toepassingen ervan in de natuurkunde en techniek. .

V=2πrf

Snelheidsconstante van de eerste orde reactie

Snelheidsconstante van de eerste orde reactie is de evenredigheidsconstante met de beginconcentratie en de hoeveelheid reactant die heeft gereageerd of gevormd product.

Kh=ln(C0C0-x)treaction

Snelheid bij versnelde vlucht

De Snelheid bij versnelde vlucht verwijst naar de Snelheid van het vliegtuig terwijl het veranderingen in Snelheid of richting ondergaat om specifieke vluchtdoelen te bereiken. Deze Snelheid wordt doorgaans gemeten als de luchtSnelheid van het vliegtuig, wat de Snelheid is van het vliegtuig ten opzichte van de omringende lucht.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Snelheid van het vliegtuig bij een bepaalde stijgSnelheid

De Snelheid van een vliegtuig bij een gegeven stijgSnelheid is de Snelheid die een vliegtuig nodig heeft om een bepaalde stijgSnelheid te bereiken. Deze formule berekent de Snelheid door de stijgSnelheid te delen door de sinus van de vliegbaanhoek tijdens de klim. Het begrijpen en toepassen van deze formule is cruciaal voor piloten en ingenieurs om de klimprestaties te optimaliseren.

v=RCsin(γ)

Snelheid op zeeniveau gegeven liftcoëfficiënt

Snelheid op zeeniveau gegeven liftcoëfficiënt is een maatstaf die de Snelheid van een object op zeeniveau berekent, rekening houdend met het lichaamsgewicht, de luchtdichtheid op zeeniveau, het referentiegebied en de liftcoëfficiënt, en vormt een cruciale parameter in de aerodynamica en het vliegtuigontwerp .

V0=2Wbody[Std-Air-Density-Sea]SCL

Snelheid op hoogte

Snelheid op hoogte is een maatstaf voor de Snelheid van een object op een specifieke hoogte boven het aardoppervlak, rekening houdend met het lichaamsgewicht, de luchtdichtheid, het referentiegebied en de liftcoëfficiënt. Deze formule maakt de berekening van de Snelheid in aerodynamische systemen mogelijk. het bieden van waardevolle inzichten voor ingenieurs en onderzoekers op het gebied van lucht- en ruimtevaart en aerodynamica.

Valt=2Wbodyρ0SCL

Snelheid op hoogte gegeven Snelheid op zeeniveau

Gegeven Snelheid op hoogte Snelheid op zeeniveau is een maatstaf voor de Snelheid van een object op een bepaalde hoogte, berekend door de Snelheid op zeeniveau te vermenigvuldigen met de vierkantswortel van de verhouding tussen de standaard luchtdichtheid op zeeniveau en de luchtdichtheid op de opgegeven hoogte.

Valt=V0[Std-Air-Density-Sea]ρ0

Snelheid van bol in Falling Sphere Resistance-methode

De Snelheid van de bol in de formule van de weerstandsmethode voor vallende bolletjes is bekend door rekening te houden met de viscositeit van vloeistof of olie, de diameter van de bol en de sleepkracht.

U=FD3πμd

Snelheid van zuiger

De formule voor de Snelheid van de zuiger wordt gedefinieerd als de Snelheid waarmee de zuiger beweegt in een zuigerpomp. Dit is een cruciaal onderdeel in verschillende industriële toepassingen en is een belangrijke factor bij het bepalen van de algehele prestaties en efficiëntie van de pomp.

vpiston=ωrsin(ωtsec)

Snelheid van vloeistof in pijp

De formule voor de vloeistofSnelheid in een leiding wordt gedefinieerd als de stroomSnelheid van vloeistof door een leiding in een systeem met heen-en-weergaande pompen. Deze wordt beïnvloed door factoren zoals de dwarsdoorsnede van de leiding, de hoekSnelheid, de straal en de tijd, die samen de beweging en de druk van de vloeistof beïnvloeden.

vl=Aaωrsin(ωts)

Snelheidsgradiënt gegeven drukgradiënt bij cilindrisch element

De Snelheidsgradiënt gegeven de drukgradiënt bij het cilindrische element wordt gedefinieerd als variatie van de Snelheid ten opzichte van de straal van de pijp.

VG=(12μ)dp|drdradial

Snelheid op elk punt in cilindrisch element

De Snelheid op elk punt in de formule voor het cilindrische element wordt gedefinieerd als de Snelheid waarmee vloeistof de pijp in stroomt en een parabolisch profiel vormt.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Snelheid bij uitlaat van mondstuk voor maximale vloeistofstroom

De Snelheid bij de uitlaat van het mondstuk voor een maximale vloeistofstroomSnelheid is cruciaal voor het bepalen van de efficiëntie en prestaties van vloeistofdynamische systemen. Het correleert direct met de drukverhouding over het mondstuk, de vloeistofdichtheid en de ontwerpkenmerken van het mondstuk, waardoor de stroomSnelheid en de voortstuwingsefficiëntie worden beïnvloed in toepassingen zoals raketmotoren en industriële spuitsystemen. Het begrijpen en optimaliseren van deze Snelheid is essentieel voor het bereiken van de gewenste operationele resultaten in technische en technologische toepassingen.

Vf=2yP1(y+1)ρa

Snelheid in afvoer gegeven kanaalstroomtijd

De formule voor Snelheid in afvoer gegeven kanaalstroomtijd wordt gedefinieerd als de Snelheid van het water dat door de afvoer stroomt.

V=LTm/f

Snelheid van voertuig gegeven middelpuntvliedende kracht

De gegeven formule voor de Snelheid van het voertuig wordt gedefinieerd als de Snelheid of Snelheid van het voertuig bij het rijden door een overgangsbocht. Het relateert parameters, middelpuntvliedende kracht, de straal van de bocht, het gewicht van het voertuig en versnelling door de zwaartekracht.

V=FcgRCurveW

Snelheid van kleinere katrol gegeven steekdiameter van beide katrollen

Snelheid van kleinere poelie gegeven spoeddiameter van beide poelies wordt gedefinieerd als Snelheid waarmee kleinere poelie van riemaandrijving roteert.

n1=Dn2d

Snelheid van grotere katrol gegeven Snelheid van kleinere katrol

Snelheid van grotere poelie gegeven Snelheid van kleinere poelie wordt gedefinieerd als de Snelheid waarmee de grotere poelie van de riemaandrijving draait.

n2=d(n1D)

Snelheidsverhouding van kettingaandrijvingen

De formule voor de Snelheidsverhouding van kettingaandrijvingen wordt gedefinieerd als de verhouding tussen het aantal tanden op het aandrijftandwiel en het aantal tanden op het aangedreven tandwiel in een kettingaandrijfsysteem, dat de Snelheid van de uitgaande as bepaalt in verhouding tot de ingaande as.

i=N1N2

Snelheidscomponent langs horizontale x-as

De Snelheidscomponent langs de horizontale x-as wordt gedefinieerd als beïnvloed wanneer het oceaanoppervlak horizontaal blijft, de enige drijvende kracht komt van windschuifspanning.

ux=VseπzDFcos(45+(πzDF))

Snelheid aan oppervlak gegeven Snelheidscomponent langs horizontale x-as

De Snelheid aan het oppervlak, gegeven de Snelheidscomponent langs de horizontale x-as, wordt gedefinieerd als de Snelheid waarmee de positie verandert ten opzichte van het referentiekader, en is een functie van de tijd in de x-richting.

Vs=uxeπzDFcos(45+(πzDF))

Snelheid in huidig profiel in drie dimensies door poolcoördinaten te introduceren

De Snelheid in het stroomprofiel in drie dimensies door de introductie van poolcoördinaten wordt gedefinieerd als het exponentieel afnemen met de diepte en de hoek tussen de wind- en stromingsrichting neemt lineair toe met de diepte, met de klok mee.

VCurrent=VseπzDF

Snelheid aan oppervlak gegeven Snelheidsdetail van huidig profiel in drie dimensies

De Velocity at Surface gegeven Velocity detail van Current Profile in Three Dimensions wordt gedefinieerd als Snelheidsparameter aan de oppervlakte die het huidige profiel beïnvloedt.

Vs=veπzDF

Snelheidsfactor voor snijtanden van conische tandwielen

Snelheidsfactor voor snijtanden van Bevel Gear wordt gedefinieerd als de verhouding van de statische belasting bij het bezwijken van de tandwieltanden tot de dynamische belasting erop bij bezwijken.

Cv cut=66+v

Snelheidsfactor voor gegenereerde tanden van conische tandwielen

Snelheidsfactor voor gegenereerde tanden van Bevel Gear wordt gedefinieerd als de verhouding van de statische belasting bij het falen van de tandwieltanden tot de dynamische belasting erop bij falen.

Cv gen=5.65.6+v

Snelheid van grotere poelie gegeven Overbrengingsverhouding van synchrone riemaandrijving

De Snelheid van de grotere poelie gegeven Overbrengingsverhouding van de synchrone riemaandrijvingsformule wordt gebruikt om de Snelheid van de grotere poelie te achterhalen wanneer de Snelheid van de kleinere poelie en de overbrengingsverhouding van het systeem bekend is.

n2=n1i

Snelheid van kleinere poelie gegeven Overbrengingsverhouding van synchrone riemaandrijving

De Snelheid van de kleinere poelie gegeven overbrengingsverhouding van de synchrone riemaandrijvingsformule wordt gebruikt om de Snelheid van de grotere poelie te achterhalen wanneer de Snelheid van de grotere poelie en de overbrengingsverhouding van het systeem bekend is.

n1=n2i

Snelheid in bochten gegeven horizontale laterale versnelling

De formule voor de gegeven horizontale dwarsversnelling in bochten wordt gebruikt om de Snelheid van de auto tijdens het nemen van bochten te bepalen.

V=AαR

Snelheid in bochten gegeven effectief gewicht van auto als gevolg van bankieren

De formule voor de bochtSnelheid gegeven het effectieve gewicht van de auto vanwege de hellingshoek wordt gebruikt om de Snelheid van de auto tijdens het nemen van bochten te bepalen op basis van het gewicht van het voertuig dat tijdens het nemen van bochten wordt ervaren.

V=(Wem-cos(Φ))R[g]sin(Φ)

Snelheidsverhouding van samengestelde tandwieltrein

Snelheidsverhouding van samengestelde tandwieltrein is het product van de overbrengingsverhoudingen van elk tandwielpaar in de trein. Het wordt berekend door de individuele overbrengingsverhoudingen te vermenigvuldigen, waarbij elke overbrengingsverhouding de verhouding is van het aantal tanden op het aandrijftandwiel tot het aantal tanden op het aangedreven tandwiel.

i=PdP'd

Snelheidsregeling van Shunt DC-motor

De formule voor Snelheidsregeling van de shunt-gelijkstroommotor wordt gedefinieerd als de verandering in Snelheid van onbelast naar vollast, uitgedrukt als een fractie of percentage van de vollastSnelheid.

Nreg=(Nnl-NflNfl)100

Snelheid van serie DC-motor

De formule Speed of Series DC Motor wordt gedefinieerd als de Snelheid waarmee de rotor draait en Synchronous Speed is de Snelheid van het magnetische veld van de stator in de driefasige inductiemotor.

N=Vs-Ia(Ra+Rsh)KfΦ

Snelheid op gemiddelde positie

De formule voor de Snelheid bij gemiddelde positie wordt gedefinieerd als een maat voor de Snelheid van een object bij zijn gemiddelde positie tijdens vrije longitudinale trillingen. Hierdoor ontstaat inzicht in het oscillatiegedrag van het object en zijn eigen frequentie.

v=(ωfx)cos(ωfttotal)

Snelheid voor gegeven draaiSnelheid

De Snelheid voor een bepaalde draaiSnelheid is een maatstaf voor de Snelheid van een vliegtuig tijdens een bocht, berekend op basis van de belastingsfactor, de zwaartekrachtversnelling en de draaiSnelheid.

V=[g]n2-1ω

Snelheid van het lichaam in eenvoudige harmonische beweging

De formule voor de Snelheid van een lichaam in eenvoudige harmonische beweging wordt gedefinieerd als de maximumSnelheid van een object terwijl het trilt rond zijn evenwichtspositie. Dit geeft een maat voor de kinetische energie van het object tijdens zijn trillende beweging.

V=A'ωcos(ωtsec)

Snelheid voor gegeven optrekmanoeuvreradius

De Snelheid voor een bepaalde optrekmanoeuvreradius van een vliegtuig is afhankelijk van de manoeuvreradius en de belastingsfactor van het vliegtuig. Deze formule geeft een vereenvoudigde benadering van de Snelheid die nodig is om de gewenste daalSnelheid te behouden tijdens de optrekmanoeuvre.

Vpull-up=R[g](n-1)

Snelheid voor gegeven pull-up manoeuvreerSnelheid

De Snelheid voor een bepaalde optrekmanoeuvreSnelheid is de Snelheid die een vliegtuig nodig heeft om een bepaalde stijgSnelheid aan te houden tijdens een optrekmanoeuvre. Deze formule berekent de Snelheid op basis van de zwaartekrachtversnelling, de pull-up-belastingsfactor en de draaiSnelheid. Het begrijpen en toepassen van deze formule is essentieel voor piloten en ingenieurs om veilige en effectieve optrekmanoeuvres te garanderen.

Vpull-up=[g]npull-up-1ω

Snelheidscoëfficiënt gegeven ontladingscoëfficiënt

De Snelheidscoëfficiënt gegeven de formule voor de afvoercoëfficiënt wordt gedefinieerd als reductiefactor voor de theoretische Snelheid door de opening.

Cv=CdCc

Snelheidspotentieel voor uniforme onsamendrukbare stroming

Het Snelheidspotentieel voor uniforme onsamendrukbare stromingsfunctie (ϕ) neemt lineair toe met de afstand in de stromingsrichting (x), wat de uniforme aard van de stroming weerspiegelt. Bijgevolg is er geen variatie in het Snelheidspotentieel met betrekking tot de y-coördinaat, wat de homogeniteit van de stroom in de y-richting illustreert.

ϕ=Vx

Snelheid op punt op vleugelprofiel voor gegeven drukcoëfficiënt en vrije stroomSnelheid

Snelheid op punt op draagvleugel voor gegeven drukcoëfficiënt en vrije stroomSnelheid formule is product van vrije stroomSnelheid in vierkantswortel van één minus drukcoëfficiënt in onsamendrukbare stroming.

V=u2(1-Cp)

Snelheidspotentieel voor uniforme onsamendrukbare stroming in poolcoördinaten

Het Snelheidspotentieel voor uniforme onsamendrukbare stroming in poolcoördinaten stelt dat de functie direct evenredig is met de radiale afstand vanaf de oorsprong (r) en de cosinus van de hoekcoördinaat (θ), geschaald door de Snelheid van de stroming (U). Dit impliceert dat de waarde van de Snelheidspotentieelfunctie lineair toeneemt met de radiale afstand tot de oorsprong en varieert met de cosinus van de hoek, wat de uniforme aard van de stroming en de afhankelijkheid van de hoekrichting weerspiegelt.

ϕ=Vrcos(θ)

Snelheidspotentieel voor 2D-bronstroom

De Velocity Potential for 2-D Source Flow-formule stelt dat de functie direct evenredig is met de natuurlijke logaritme van de radiale afstand tot het bronpunt en de sterkte van de bron. Deze logaritmische relatie weerspiegelt de eigenschap van potentiële stroming waarbij de Snelheid logaritmisch afneemt met toenemende afstand tot de bron.

ϕ=Λ2πln(r)

Snelheid van geluidsgolf gegeven bulkmodulus

Snelheid van geluidsgolf gegeven bulkmodulus van het medium, geeft inzicht in hoe snel geluid door dat materiaal reist. Het begrijpen van deze relatie is cruciaal in akoestiek, materiaalkunde en technische toepassingen waarbij de voortplanting van geluid en de mechanische eigenschappen van materialen belangrijke overwegingen zijn.

C=Kρa

Snelheid van geluidsgolf met behulp van isotherm proces

Snelheid van geluidsgolven met behulp van isothermische processen geeft inzicht in hoe temperatuur en de fysieke eigenschappen van gassen de Snelheid waarmee geluid zich voortplant beïnvloeden, waardoor nauwkeurige berekeningen en weloverwogen ontwerpbeslissingen op het gebied van akoestiek, aerodynamica en verschillende technologische toepassingen mogelijk zijn.

C=Rc

Snelheid van geluidsgolf met behulp van adiabatisch proces

De Snelheid van geluidsgolven met behulp van het adiabatische proces hangt af van de adiabatische index (verhouding van soortelijke warmtes), de universele gasconstante, de absolute temperatuur van het gas en de molaire massa van het gas.

C=yRc

Snelheid van geluidsgolf gegeven Mach-nummer voor samendrukbare vloeistofstroom

Snelheid van geluidsgolf gegeven Mach-getal voor samendrukbare vloeistofstroom, geeft de Snelheid aan waarmee geluid zich door het medium voortplant in verhouding tot de geluidsSnelheid in dat medium. Deze relatie is van fundamenteel belang in de aerodynamica, ruimtevaarttechniek en akoestiek, waar het Mach-getal het stromingsregime karakteriseert en het gedrag van schokgolven en geluidsoverdracht beïnvloedt.

C=VM

Snelheidsconstante gegeven zuurstofequivalent

De Snelheidsconstante gegeven zuurstofequivalentformule wordt gedefinieerd als de Snelheid van oxidatie van organisch materiaal en hangt af van de aard van organisch materiaal en de temperatuur.

Kh=c-log(Lt,e)t

Snelheidsconstante gegeven Deoxygenatieconstante

De Snelheidsconstante, gegeven de zuurstofconstante-formule, wordt gedefinieerd als de Snelheid van oxidatie van organisch materiaal. Het hangt af van de temperatuur en de aard van het organische materiaal dat in het rioolwater aanwezig is.

K=KD0.434

Snelheid van bol gegeven weerstandskracht op bolvormig oppervlak

De Snelheid van de bol gegeven weerstandskracht op het sferische oppervlak wordt gedefinieerd als de Snelheid van het object in de vloeistof die stroomt.

Vmean=Fresistance3πμDS

Snelheid van bol gegeven weerstandscoëfficiënt

De gegeven Snelheidscoëfficiënt van de bol wordt gedefinieerd als de gemiddelde Snelheid waarmee de bol een stroom beweegt.

Vmean=24μρCDDS

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!