Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheidsverhouding van riemaandrijving

De formule voor de Snelheidsverhouding van riemaandrijving wordt gedefinieerd als de verhouding tussen de hoekSnelheid van de volgas en die van de aandrijfas in een riemaandrijfsysteem. Dit is een mechanisch apparaat dat wordt gebruikt om vermogen over een afstand over te brengen.

i=NfNd

Snelheidsverhouding van samengestelde riemaandrijving gegeven Product van diameter van aangedreven

De verhouding van de Snelheid van de samengestelde riemaandrijving wordt bepaald door de formule voor het product van de diameter van de aangedreven riem. Deze formule is gedefinieerd als de verhouding van de hoekSnelheid van de aandrijfpoelie tot die van de aangedreven poelie in een samengesteld riemaandrijfsysteem, wat een maatstaf is voor het mechanische voordeel van het systeem.

i=P1P2

Snelheidsverhouding van samengestelde riemaandrijving

De formule voor de Snelheidsverhouding van samengestelde riemaandrijving wordt gedefinieerd als de verhouding tussen de hoekSnelheid van de aangedreven as en die van de aandrijfas in een samengesteld riemaandrijfsysteem. Dit is een mechanisch systeem dat wordt gebruikt om vermogen van de ene as naar de andere over te brengen.

i=NnNd′

Snelheidsverhouding van eenvoudige riemaandrijving wanneer geen rekening wordt gehouden met de dikte

De formule voor de Snelheidsverhouding van een eenvoudige riemaandrijving waarbij de dikte niet in aanmerking wordt genomen, wordt gedefinieerd als een maatstaf voor de verhouding tussen de hoekSnelheid van de aandrijfpoelie en de hoekSnelheid van de volgpoelie in een eenvoudig riemaandrijfsysteem, waarbij de dikte van de riem niet in aanmerking wordt genomen. Dit biedt werktuigbouwkundigen een vereenvoudigde berekening.

i=dddf

Snelheidsverhouding van eenvoudige riemaandrijving wanneer rekening wordt gehouden met de dikte

De formule voor de Snelheidsverhouding van een eenvoudige riemaandrijving, rekening houdend met de dikte, wordt gedefinieerd als een maat voor de verhouding tussen de hoekSnelheid van de aandrijfpoelie en de hoekSnelheid van de volgpoelie in een eenvoudig riemaandrijfsysteem, rekening houdend met de dikte van de riem.

i=dd+tdf+t

Snelheidsverhouding van riem gegeven totaal percentage slip

Snelheidsverhouding van riem gegeven De formule voor het totale percentage slip wordt gedefinieerd als de verhouding tussen de Snelheid van de aandrijfpoelie en de Snelheid van de volgpoelie in een riemaandrijfsysteem, rekening houdend met het totale percentage slip dat optreedt tussen de twee poelies, wat een maatstaf biedt voor de efficiëntie van het systeem.

i=(dd+t)1-0.01sdf+t

Snelheidsverhouding van riem gegeven Creep of Belt

Snelheidsverhouding van riem gegeven De formule voor kruip van riem wordt gedefinieerd als een dimensieloze grootheid die de verhouding uitdrukt tussen de Snelheid van de aandrijfpoelie en de Snelheid van de volgpoelie in een riemaangedreven systeem, rekening houdend met de kruip van de riem, die de algehele efficiëntie van het systeem beïnvloedt.

i=dd(E+σ2)df(E+σ1)

Snelheid voor overdracht van maximaal vermogen via riem

De formule voor de overdracht van maximaal vermogen via een riem wordt gedefinieerd als de maximale vermogensoverdrachtSnelheid van een riemaandrijfsysteem. Dit is van cruciaal belang bij het ontwerpen en optimaliseren van riemaandrijfsystemen voor een efficiënte vermogensoverdracht.

v=Pm3m

Snelheid van alfadeeltje met behulp van afstand van dichtstbijzijnde nadering

De Snelheid van alfadeeltjes met behulp van de afstand van de dichtstbijzijnde benadering is de Snelheid waarmee een alfadeeltje in een atoomkern reist.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Snelheid van volger voor cirkelboogcamera als contact zich op cirkelflank bevindt

De formule voor de Snelheid van de volger voor een cirkelvormige boognok als het contactpunt zich op de cirkelvormige flank bevindt, wordt gedefinieerd als de maat voor de Snelheid van de volger in een cirkelvormig nokkenasmechanisme wanneer het contactpunt zich op de cirkelvormige flank bevindt. Dit is een cruciale parameter bij het ontwerpen en optimaliseren van nokvolgersystemen.

v=ω(R-r1)sin(θturned)

Snelheid gegeven Pull-down manoeuvreradius

De Snelheid die wordt gegeven bij de pull-down-manoeuvreradius is de Snelheid die een vliegtuig nodig heeft om een specifieke draairadius te behouden tijdens een pull-down-manoeuvre. Deze formule berekent de Snelheid op basis van de draairadius, de zwaartekrachtversnelling en de belastingsfactor. Het begrijpen en toepassen van deze formule is van cruciaal belang voor piloten en ingenieurs om veilige en gecontroleerde pull-down-manoeuvres te garanderen.

Vpull-down=R[g](n+1)

Snelheid voor gegeven pull-down-manoeuvreSnelheid

De Snelheid voor een bepaalde pull-down-manoeuvreSnelheid is afhankelijk van de belastingsfactor en de draaiSnelheid van het vliegtuig. Deze formule geeft een vereenvoudigde benadering van de Snelheid die nodig is om de gewenste daalSnelheid te behouden tijdens de pull-down-manoeuvre.

Vpull-down=[g]1+nωpull-down

Snelheid van deeltjes in 3D-box

De Snelheid van het deeltje in de 3D-doosformule wordt gedefinieerd als een verhouding van tweemaal de lengte van de rechthoekige doos en de tijd tussen de botsing.

u3D=2Lt

Snelheid van gasmolecuul gegeven Kracht

De Snelheid van gasmolecuul gegeven kracht formule wordt gedefinieerd als de vierkantswortel van het product van de lengte van de rechthoekige doos en kracht per massa van het deeltje.

uF=FLm

Snelheid van gasmolecuul in 1D gegeven druk

De Snelheid van het gasmolecuul in 1D gegeven drukformule wordt gedefinieerd als onder de wortel van de verhouding van de gasdruk vermenigvuldigd met volume met de massa van het deeltje.

up=PgasVboxm

Snelheid van het lichaam gegeven momentum

Snelheid van een lichaam gegeven De formule voor impuls wordt gedefinieerd als een maat voor de Snelheid van een object in een specifieke richting. Deze wordt berekend door het momentum van het object te delen door de massa. Dit biedt een fundamenteel concept voor het begrijpen van de beweging van een object en de relatie ervan met kracht.

v=pmo

Snelheid van verandering van momentum gegeven versnelling en massa

VeranderingsSnelheid van impuls gegeven De formule voor versnelling en massa wordt gedefinieerd als een maat voor de Snelheid waarmee de impuls van een object verandert wanneer er een externe kracht op inwerkt. De massa van het object en de versnelling zijn de belangrijkste factoren die deze verandering beïnvloeden.

rm=moa

Snelheid van verandering van momentum gegeven initiële en eindsnelheden

De formule voor veranderingsSnelheid van impuls bij begin- en eindSnelheid wordt gedefinieerd als een maat voor de Snelheid waarmee het impuls van een object verandert in relatie tot de begin- en eindSnelheid. Hierdoor ontstaat inzicht in de kracht en versnelling van het object gedurende een bepaalde tijdsperiode.

rm=movf-vit

Snelheid van projectiel van Mach-kegel in samendrukbare vloeistofstroom

Snelheid van projectiel van Mach Cone in samendrukbare vloeistofstroom beschrijft de Snelheid waarmee het projectiel zich voortbeweegt wanneer het de geluidsSnelheid in het omringende medium bereikt of overschrijdt. Het begrijpen van deze Snelheid is cruciaal in aerodynamica en ballistische studies, omdat het het begin van schokgolven aangeeft en de aerodynamische uitdagingen die gepaard gaan met supersonische en hypersonische vluchten.

V=Csin(μ)

Snelheid van geluidsgolf rekening houdend met Mach-hoek in samendrukbare vloeistofstroom

Snelheid van geluidsgolven, rekening houdend met de Mach-hoek in samendrukbare vloeistofstroming, is van belang om te begrijpen hoe geluid zich door een medium voortplant wanneer de vloeistofSnelheid de geluidsSnelheid benadert of overschrijdt. Deze relatie helpt bij het voorspellen van het gedrag van schokgolven en de overdracht van geluid in verschillende omgevingen, essentieel in de lucht- en ruimtevaarttechniek, akoestiek en de studie van snelle vloeistofdynamica.

C=Vsin(μ)

Snelheid tijdens hardlopen Gedeeltelijk volledig gegeven Proportionele Snelheid

De Snelheid bij gedeeltelijke vulling wordt bepaald door de proportionele Snelheid. Deze wordt gedefinieerd als de stroomSnelheid van vloeistof in een pijp wanneer deze niet volledig gevuld is. Deze Snelheid wordt beïnvloed door de diepte en de Snelheid.

Vs=VPv

Snelheid tijdens het hardlopen op volle Snelheid gegeven Proportionele Snelheid

De Snelheid bij volledige vulling wordt gedefinieerd als de Snelheid van de vloeistofstroom in een buis wanneer deze volledig gevuld is. Deze Snelheid wordt beïnvloed door de helling en ruwheid van de buis.

V=VsPv

Snelheidsconstante gegeven deoxygenatieconstante

De Snelheidsconstante, gegeven de formule voor deoxygenatieconstante, wordt gedefinieerd als de Snelheid van oxidatie van organisch materiaal en hangt af van de aard van het daarin aanwezige organische materiaal en de temperatuur.

K=2.3KD

Snelheid van de lente gegeven doorbuiging

Veerkracht gegeven De doorbuigingsformule wordt gedefinieerd als een maat voor de stijfheid van een veer, wat de hoeveelheid kracht is die nodig is om één eenheid van vervorming of verplaatsing in een veer te produceren. Het is een cruciale parameter bij het ontwerp en de analyse van op veren gebaseerde systemen.

k=Pδ

Snelheid voor werk gedaan als er geen energieverlies is

De Snelheid voor het uitgevoerde werk als er geen energieverlies is, is de mate van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.

vf=(w2Gwf)+v2

Snelheid gegeven efficiëntie van systeem

De Snelheid gegeven Efficiëntie van het systeem is de mate van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.

vf=v1-η

Snelheid op punt gegeven efficiëntie van systeem

De Velocity at Point gegeven Efficiëntie van het systeem is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.

v=1-ηvf

Snelheid van stroomvelden

De formule Velocity of Flow Fields wordt gedefinieerd als de Snelheid waarmee water van kop tot staart in het kanaal stroomt.

vm=Hf1-Ke(2[g])+((n)2)l2.21rh1.33333

Snelheidsgradiënt gegeven schuifkracht per oppervlakte-eenheid of schuifspanning

De Snelheidsgradiënt gegeven de formule voor schuifkracht per oppervlakte-eenheid of schuifspanning wordt gedefinieerd als het Snelheidsverschil tussen aangrenzende vloeistoflagen.

du/dy=σμ

Snelheid van de bovenste plaat gegeven schuifkracht per oppervlakte-eenheid of schuifspanning

De Snelheid van de bovenste plaat, gegeven de formule voor schuifkracht per oppervlakte-eenheid of schuifspanningsformule wordt gedefinieerd als de twee parallelle platen, elk met een oppervlakte-eenheid, gescheiden door de vloeistofvulbreedte tussen de platen.

Vf=σyμ

Snelheidsconstante van onomkeerbare reactie van de tweede orde

De formule voor de Snelheidsconstante van de onomkeerbare reactie van de tweede orde wordt gedefinieerd als de evenredigheidsconstante in de vergelijking die de relatie uitdrukt tussen de Snelheid van een chemische reactie en de concentraties van de reagerende stoffen.

k2=rCACB

Snelheidsmodulatie van elektronen in Klystron-holte

De Snelheidsmodulatie van elektronen in de Klystron Cavity-formule wordt gedefinieerd als die variatie in de Snelheid van een elektronenbundel veroorzaakt door het afwisselend versnellen en vertragen van de elektronen in de straal.

vp=2[Charge-e]vh[Mass-e]

Snelheidsconstante op basis van het gewicht van de katalysator in batch-vaste stoffen en batch-vloeistoffen

De formule Snelheidsconstante gebaseerd op het gewicht van de katalysator in batch-vaste stoffen en batch-vloeistoffen wordt gedefinieerd als de Snelheidsconstante gebaseerd op het gewicht van de katalysator, een parameter die wordt gebruikt om de kinetiek van een chemische reactie te beschrijven, vooral in de context van katalyse. Het wordt gedefinieerd door de verhouding van de reactieSnelheid tot het gewicht van de aanwezige katalysator.

k'=(VkdWd)exp(ln(ln(CACA∞))+kdt)

Snelheidsconstante op basis van het gewicht van de katalysator in een batch vaste stoffen en een gemengde constante stroom vloeistoffen

De formule voor de Snelheidsconstante op basis van het gewicht van de katalysator in de batch-vaste stoffen en de gemengde constante stroom van vloeistoffen wordt gedefinieerd als de Snelheidsconstante die wordt berekend wanneer de batch-vaste stoffen en de gemengde constante stroom van vloeistoffen in aanmerking worden genomen in de reactoren, bij deactivering van de katalysator.

k'=exp(ln((CA0CA)-1)+kd,MFt)𝛕 '

Snelheidsconstante op basis van het gewicht van de katalysator in de batch vaste stoffen en de gemengde, veranderende vloeistofstroom

De formule voor de Snelheidsconstante op basis van het gewicht van de katalysator in de batch vaste stoffen en de gemengde veranderende stroom van vloeistoffen wordt gedefinieerd als de Snelheidsconstante die wordt berekend wanneer de batch vaste stoffen en de gemengde stroom van vloeistoffen in de reactoren worden beschouwd, bij deactivering van de katalysator.

k'=CA0-CACAexp(ln(𝛕 ')-kd,MFt)

Snelheidsvoortplanting in verliesloze lijn

De formule voor Snelheidsvoortplanting in verliesloze lijn is omgekeerd evenredig met de vierkantswortel van het product van serie-inductie en seriecapaciteit van een lijn.

Vp=1lc

Snelheid van vloeistofdeeltje

De Snelheid van vloeistofdeeltjes in de terminologie van vloeistofdynamica wordt gebruikt om de beweging van een continuüm wiskundig te beschrijven.

vf=dta

Snelheid van geluid

De geluidsSnelheid is de Snelheid waarmee kleine drukverstoringen, of geluidsgolven, zich door een medium voortplanten. Het vertegenwoordigt de Snelheid waarmee deze verstoringen zich door het medium verplaatsen en energie en informatie overbrengen.

a=γ[R-Dry-Air]Ts

Snelheidscoëfficiënt

De Snelheidscoëfficiëntformule wordt gedefinieerd als de verhouding tussen de werkelijke uittreedSnelheid en de verhouding tussen de ideale uittreedSnelheid.

Cv=CactCideal

Snelheid van vloeistof in pijp voor drukverlies bij ingang van pijp

De vloeistofSnelheid in de pijp voor drukverlies bij de ingang van de pijpformule is bekend, rekening houdend met het verlies van hoofd bij de ingang van de pijp, dat afhangt van de vorm van de ingang.

v=hi2[g]0.5

Snelheidscoëfficiënt gegeven ontladingscoëfficiënt

De Snelheidscoëfficiënt gegeven de formule voor de afvoercoëfficiënt wordt gedefinieerd als reductiefactor voor de theoretische Snelheid door de opening.

Cv=CdCc

Snelheidspotentieel voor uniforme onsamendrukbare stroming

Het Snelheidspotentieel voor uniforme onsamendrukbare stromingsfunctie (ϕ) neemt lineair toe met de afstand in de stromingsrichting (x), wat de uniforme aard van de stroming weerspiegelt. Bijgevolg is er geen variatie in het Snelheidspotentieel met betrekking tot de y-coördinaat, wat de homogeniteit van de stroom in de y-richting illustreert.

ϕ=Vx

Snelheid op punt op vleugelprofiel voor gegeven drukcoëfficiënt en vrije stroomSnelheid

Snelheid op punt op draagvleugel voor gegeven drukcoëfficiënt en vrije stroomSnelheid formule is product van vrije stroomSnelheid in vierkantswortel van één minus drukcoëfficiënt in onsamendrukbare stroming.

V=u2(1-Cp)

Snelheidspotentieel voor uniforme onsamendrukbare stroming in poolcoördinaten

Het Snelheidspotentieel voor uniforme onsamendrukbare stroming in poolcoördinaten stelt dat de functie direct evenredig is met de radiale afstand vanaf de oorsprong (r) en de cosinus van de hoekcoördinaat (θ), geschaald door de Snelheid van de stroming (U). Dit impliceert dat de waarde van de Snelheidspotentieelfunctie lineair toeneemt met de radiale afstand tot de oorsprong en varieert met de cosinus van de hoek, wat de uniforme aard van de stroming en de afhankelijkheid van de hoekrichting weerspiegelt.

ϕ=Vrcos(θ)

Snelheidspotentieel voor 2D-bronstroom

De Velocity Potential for 2-D Source Flow-formule stelt dat de functie direct evenredig is met de natuurlijke logaritme van de radiale afstand tot het bronpunt en de sterkte van de bron. Deze logaritmische relatie weerspiegelt de eigenschap van potentiële stroming waarbij de Snelheid logaritmisch afneemt met toenemende afstand tot de bron.

ϕ=Λ2πln(r)

Snelheid op radiale afstand r1 gegeven koppel uitgeoefend op vloeistof

De Snelheid op radiale afstand r1 gegeven koppel uitgeoefend op vloeistof wordt gedefinieerd als het koppel uitgeoefend op de vloeistof, resulterend in roterende beweging of stroming.

V1=qflowr2V2-(τΔ)r1qflow

Snelheid op radiale afstand r2 gegeven koppel uitgeoefend op vloeistof

De Snelheid op radiale afstand r2 gegeven koppel uitgeoefend op vloeistof wordt gedefinieerd als het koppel de hoekSnelheid beïnvloedt, het leidt tot een overeenkomstige verandering in de Snelheid van de vloeistof, resulterend in een specifieke waarde op de gegeven radiale afstand.

V2=qflowr1V1+(τΔ)qflowr2

Snelheid van bol gegeven weerstandskracht op bolvormig oppervlak

De Snelheid van de bol gegeven weerstandskracht op het sferische oppervlak wordt gedefinieerd als de Snelheid van het object in de vloeistof die stroomt.

Vmean=Fresistance3πμDS

Snelheid van bol gegeven weerstandscoëfficiënt

De gegeven Snelheidscoëfficiënt van de bol wordt gedefinieerd als de gemiddelde Snelheid waarmee de bol een stroom beweegt.

Vmean=24μρCDDS

Snelheid in beurt

Snelheid in bocht wordt gedefinieerd als de Snelheid van vliegtuigen bij bochten of bochten en is een functie van de straal van de bocht.

VTurning Speed=4.1120RTaxiway0.5

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!