Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheid van geluid

De geluidsSnelheid is de Snelheid waarmee kleine drukverstoringen, of geluidsgolven, zich door een medium voortplanten. Het vertegenwoordigt de Snelheid waarmee deze verstoringen zich door het medium verplaatsen en energie en informatie overbrengen.

a=γ[R-Dry-Air]Ts

Snelheid achter normale schok volgens normale schokmomentumvergelijking

De Snelheid achter normale schok door middel van Normal Shock Momentum Equation berekent de Snelheid van een vloeistof stroomafwaarts van een normale schokgolf met behulp van de Normal Shock Momentum Equation. Deze formule omvat parameters zoals de statische druk vóór en achter de schok, de dichtheid vóór de schok en de Snelheid stroomopwaarts van de schok. Het biedt cruciale inzichten in de Snelheidsverandering als gevolg van het passeren van de schokgolf.

V2=P1-P2+ρ1V12ρ2

Snelheid vóór normale schok door normale schokmomentumvergelijking

De Snelheid vóór normale schok met behulp van Normal Shock Momentum Equation berekent de Snelheid van een vloeistof vóór een normale schokgolf met behulp van de Normal Shock Momentum Equation. Deze formule houdt rekening met parameters zoals de statische druk voor en achter de schok, de dichtheid achter de schok en de Snelheid stroomafwaarts van de schok. Het biedt cruciale informatie over de vloeistofSnelheid voordat de schokgolf wordt ervaren, wat helpt bij de analyse van het samendrukbare stromingsgedrag.

V1=P2-P1+ρ2V22ρ1

Snelheid van de zuiger tijdens extensie

De formule voor de Snelheid van de zuiger tijdens de extensie wordt gedefinieerd als de bewegingsSnelheid van een zuiger in een hydraulische actuator of motor. Dit is een kritische parameter bij het bepalen van de prestaties en efficiëntie van het systeem en wordt beïnvloed door de stroomSnelheid en het zuigeroppervlak.

vpiston=QextAp

Snelheid van de zuiger tijdens het terugtrekken

De formule voor de Snelheid van de zuiger tijdens het terugtrekken wordt gedefinieerd als de bewegingsSnelheid van een zuiger tijdens de terugtrekkingsfase in een hydraulisch systeem. Dit is van cruciaal belang voor het bepalen van de algehele prestaties en efficiëntie van hydraulische actuatoren en motoren.

vpiston=QretAp-Ar

Snelheidsverhouding

De formule voor de Snelheidsverhouding wordt gedefinieerd als een dimensieloze grootheid die het stromingsgedrag in een centrifugaalpomp kenmerkt en een relatie biedt tussen de omtrekSnelheid van de waaier en de spuitSnelheid van de vloeistof. Dit is essentieel voor het ontwerpen en optimaliseren van de pompprestaties.

Ku=u22[g]Hm

Snelheid van bol in Falling Sphere Resistance-methode

De Snelheid van de bol in de formule van de weerstandsmethode voor vallende bolletjes is bekend door rekening te houden met de viscositeit van vloeistof of olie, de diameter van de bol en de sleepkracht.

U=FD3πμd

Snelheidsverdeling in ruwe turbulente stroming

De formule Snelheidsverdeling in ruwe turbulente stroming wordt gedefinieerd als de functie die beschrijft hoe moleculaire snelheden gemiddeld worden verdeeld in een ruwe, turbulente stroming.

v=5.75vshearlog10(30yks)

Snelheid van bewegende boot

De formule voor bewegende bootSnelheid wordt gedefinieerd als een stroommeter van het propellertype die vrij rond een verticale as kan bewegen en met een bepaalde Snelheid in een boot wordt gesleept.

vb=Vcos(θ)

Snelheidsconstante voor hetzelfde product volgens titratiemethode voor reactie van de tweede orde

De Snelheidsconstante voor hetzelfde product door de titratiemethode voor de tweede-ordereactieformule wordt gedefinieerd als het aftrekken van het inverse van het initiële volume en het tijdsinterval van het inverse van het volume van een reactant op tijdstip t en tijdsinterval.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Snelheid van zuiger

De formule voor de Snelheid van de zuiger wordt gedefinieerd als de Snelheid waarmee de zuiger beweegt in een zuigerpomp. Dit is een cruciaal onderdeel in verschillende industriële toepassingen en is een belangrijke factor bij het bepalen van de algehele prestaties en efficiëntie van de pomp.

vpiston=ωrsin(ωtsec)

Snelheid van vloeistof in pijp

De formule voor de vloeistofSnelheid in een leiding wordt gedefinieerd als de stroomSnelheid van vloeistof door een leiding in een systeem met heen-en-weergaande pompen. Deze wordt beïnvloed door factoren zoals de dwarsdoorsnede van de leiding, de hoekSnelheid, de straal en de tijd, die samen de beweging en de druk van de vloeistof beïnvloeden.

vl=Aaωrsin(ωts)

Snelheidsverhouding van hydraulische koppeling:

De Snelheidsverhouding van de formule voor hydraulische koppelingen wordt gedefinieerd als een dimensieloze parameter die de prestaties van een hydraulische koppeling kenmerkt, door de verhouding tussen de turbineSnelheid en de pompSnelheid weer te geven. Het is een kritische factor bij het evalueren van de efficiëntie en effectiviteit van hydraulische systemen.

SR=ωtωp

Snelheid bij inlaat gegeven koppel door vloeistof

Snelheid bij inlaat gegeven koppel door vloeistof is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd bij de inlaat van een object.

vf=(τGwf)+(vr)rO

Snelheid bij uitlaat gegeven koppel door vloeistof

Snelheid bij uitlaat gegeven koppel door vloeistof is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd bij de uitlaat van een object.

v=(τGwf)-(vfr)rO

Snelheid bij inlaat gegeven werk aan wiel

Snelheid bij inlaat gegeven arbeid verricht op wiel is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd bij een inlaat van een object.

vf=(wGwfω)-vrOr

Snelheid bij uitlaat gegeven werk aan wiel

Snelheid bij uitlaat gegeven werk op wiel is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd bij een uitlaat van een object.

v=(wGwfω)-(vfr)rO

Snelheid van transportband

De formule Snelheid van transportband wordt gedefinieerd als transportbanden verplaatsen dozen met ongeveer dezelfde Snelheid als een persoon die ze draagt. Dit is ongeveer 65 voet per minuut.

S=LQWm

Snelheid van bewegende grenzen

De formule Snelheid van bewegende grenzen wordt gedefinieerd als het gebied of het oppervlak van de grens of het object dat met een constante Snelheid beweegt.

V=FyμA

Snelheidsgradiënt gegeven schuifkracht per oppervlakte-eenheid of schuifspanning

De Snelheidsgradiënt gegeven de formule voor schuifkracht per oppervlakte-eenheid of schuifspanning wordt gedefinieerd als het Snelheidsverschil tussen aangrenzende vloeistoflagen.

du/dy=σμ

Snelheid van de bovenste plaat gegeven schuifkracht per oppervlakte-eenheid of schuifspanning

De Snelheid van de bovenste plaat, gegeven de formule voor schuifkracht per oppervlakte-eenheid of schuifspanningsformule wordt gedefinieerd als de twee parallelle platen, elk met een oppervlakte-eenheid, gescheiden door de vloeistofvulbreedte tussen de platen.

Vf=σyμ

Snelheid van grotere poelie gegeven Overbrengingsverhouding van synchrone riemaandrijving

De Snelheid van de grotere poelie gegeven Overbrengingsverhouding van de synchrone riemaandrijvingsformule wordt gebruikt om de Snelheid van de grotere poelie te achterhalen wanneer de Snelheid van de kleinere poelie en de overbrengingsverhouding van het systeem bekend is.

n2=n1i

Snelheid van kleinere poelie gegeven Overbrengingsverhouding van synchrone riemaandrijving

De Snelheid van de kleinere poelie gegeven overbrengingsverhouding van de synchrone riemaandrijvingsformule wordt gebruikt om de Snelheid van de grotere poelie te achterhalen wanneer de Snelheid van de grotere poelie en de overbrengingsverhouding van het systeem bekend is.

n1=n2i

Snelheid in bochten gegeven horizontale laterale versnelling

De formule voor de gegeven horizontale dwarsversnelling in bochten wordt gebruikt om de Snelheid van de auto tijdens het nemen van bochten te bepalen.

V=AαR

Snelheid in bochten gegeven effectief gewicht van auto als gevolg van bankieren

De formule voor de bochtSnelheid gegeven het effectieve gewicht van de auto vanwege de hellingshoek wordt gebruikt om de Snelheid van de auto tijdens het nemen van bochten te bepalen op basis van het gewicht van het voertuig dat tijdens het nemen van bochten wordt ervaren.

V=(Wem-cos(Φ))R[g]sin(Φ)

Snelheidsconstante voor nulordereactie met ruimtetijd voor gemengde stroom

De formule Snelheidsconstante voor nulde-ordereactie met behulp van ruimtetijd voor gemengde stroom wordt gedefinieerd als de reactieSnelheid voor nulde-ordereactie voor gemengde stroom waarbij de fractionele volumeverandering nul is.

kmixed flow=XmfrCo𝛕mixed

Snelheidsconstante voor eerste-ordereactie met behulp van reactantconcentratie voor gemengde stroom

De formule voor Snelheidsconstante voor eerste-ordereactie met behulp van reactantconcentratie voor gemengde stroom wordt gedefinieerd als de evenredigheidsconstante die de relatie geeft tussen reactieSnelheid en het eerste concentratievermogen van een van de reactanten voor gemengde stroom.

k'=(1𝛕mixed)(Co-CC)

Snelheidsconstante voor eerste-ordereactie met ruimtetijd voor gemengde stroom

De formule Snelheidsconstante voor eerste-ordereactie met behulp van ruimtetijd voor gemengde stroom wordt gedefinieerd als de evenredigheidsconstante die de relatie geeft tussen reactieSnelheid en het eerste concentratievermogen van een van de reactanten voor gemengde stroom.

k'=(1𝛕mixed)(Xmfr1-Xmfr)

Snelheid van turbine gegeven eenheidsSnelheid

De Speed of Turbine gegeven Unit Speed-formule wordt gedefinieerd als de rotatieSnelheid van de turbine.

N=NuH

Snelheid van energieoverdracht op basis van afstanden en levensduur van de donor

De Snelheid van energieoverdracht met behulp van de formule voor afstanden en donorlevensduur wordt gedefinieerd als een vermenigvuldiging van de inverse van de donorlevensduur zonder FRET en tot de zesde macht van de verhouding van de kritische afstand tot de donoracceptorafstand.

KT=(1ζD)(R0r)6

Snelheidsconstante van fase tussen bel en wolk

De formule voor de Snelheidsconstante van de fase tussen bel en wolk wordt gedefinieerd als berekende Snelheidsconstante, wanneer er belvorming optreedt in de gefluïdiseerde reactor.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Snelheidsconstante van fase tussen Cloud-Wake en Emulsion

De Snelheidsconstante van de fase tussen de formule Cloud-Wake en Emulsion wordt gedefinieerd als de Snelheidsconstante die wordt berekend wanneer er borreling optreedt in de interfase in de gefluïdiseerde reactor volgens het Kunii-Levenspiel-model.

Kce=6.77(εmfDf Rubrdb3)12

Snelheid voor vertraagde coherentie in fotodissociatie

De formule voor Snelheid voor vertraagde coherentie in fotodissociatie wordt gedefinieerd als de grootte van de verandering van zijn positie in de tijd of de grootte van de verandering van zijn positie per tijdseenheid tijdens vertraagde coherentie tijdens fotodissociatie van het KrF-molecuul.

vcov=2(Vcov_R0-Vcov_R)μcov

Snelheid in snel gefluïdiseerd bed

De formule voor Snelheid in snel gefluïdiseerd bed verwijst naar de opwaartse Snelheid van het fluïdisatiegas dat wordt gebruikt om vaste deeltjes in het bed te suspenderen en fluïdiseren. Snelle gefluïdiseerde bedden worden gekenmerkt door hoge gassnelheden, en deze snelheden zijn doorgaans aanzienlijk groter dan de minimale fluïdisatieSnelheid.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Snelheid bij pneumatisch transport

De formule voor Snelheid bij pneumatisch transport wordt gedefinieerd als de Snelheid, doorgaans uitgedrukt als de lucht- of gasSnelheid op het punt van injectie of introductie van de vaste deeltjes in het transportsysteem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Snelheidsverhouding van samengestelde tandwieltrein

Snelheidsverhouding van samengestelde tandwieltrein is het product van de overbrengingsverhoudingen van elk tandwielpaar in de trein. Het wordt berekend door de individuele overbrengingsverhoudingen te vermenigvuldigen, waarbij elke overbrengingsverhouding de verhouding is van het aantal tanden op het aandrijftandwiel tot het aantal tanden op het aangedreven tandwiel.

i=PdP'd

Snelheid van elektron in baan gegeven hoekSnelheid

De Snelheid van het elektron in de baan gegeven hoekSnelheid is een vectorgrootheid (het heeft zowel grootte als richting) en is de tijdsSnelheid van positieverandering (van een deeltje).

ve_AV=ωrorbit

Snelheid van elektron gegeven tijdsperiode van elektron

De Snelheid van elektron gegeven tijdsperiode van elektron is een vectorgrootheid (het heeft zowel grootte als richting) en is de tijdsSnelheid van positieverandering (van een deeltje).

velectron=2πrorbitT

Snelheid van klein element voor longitudinale trillingen

De formule voor de Snelheid van een klein element bij longitudinale trillingen wordt gedefinieerd als een maat voor de Snelheid van een klein element bij een longitudinale trilling, die wordt beïnvloed door de traagheid van de beperking, en wordt gebruikt om de trillingen in verschillende mechanische systemen te analyseren.

vs=xVlongitudinall

Snelheid van deeltje 1 gegeven kinetische energie

De Snelheid van deeltje 1 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van andere deeltjes en de totale kinetische energie van het systeem kennen. Aangezien de totale kinetische energie de som is van de individuele kinetische energie van beide deeltjes, blijft er maar één variabele over, en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.

v1=(2KE)-(m2v22)m1

Snelheid van deeltje 2 gegeven kinetische energie

De Snelheid van deeltje 2 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van een ander deeltje en de totale kinetische energie van het systeem kennen. Kinetische energie is het werk dat nodig is om een lichaam met een bepaalde massa vanuit rust te versnellen naar de aangegeven Snelheid. Omdat kinetische energie, KE, een som is van de kinetische energie voor elke massa, hebben we maar één variabele overgehouden en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.

v2=(2KE)-(m1v12)m2

Snelheid van deeltje 1

De formule Snelheid van deeltje 1 wordt gedefinieerd om Snelheid te relateren aan rotatiefrequentie en straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie tussen hoekSnelheid en frequentie (hoekSnelheid = 2 * pi * frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.

vp1=2πR1νrot

Snelheid van deeltje 2

De formule Velocity of Particle 2 is gedefinieerd om de Snelheid te relateren aan de rotatiefrequentie en de straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie van de hoekSnelheid met de frequentie (hoekSnelheid = 2*pi* frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.

v2=2πR2νrot

Snelheid voor gegeven draaiSnelheid

De Snelheid voor een bepaalde draaiSnelheid is een maatstaf voor de Snelheid van een vliegtuig tijdens een bocht, berekend op basis van de belastingsfactor, de zwaartekrachtversnelling en de draaiSnelheid.

V=[g]n2-1ω

Snelheid van het lichaam in eenvoudige harmonische beweging

De formule voor de Snelheid van een lichaam in eenvoudige harmonische beweging wordt gedefinieerd als de maximumSnelheid van een object terwijl het trilt rond zijn evenwichtspositie. Dit geeft een maat voor de kinetische energie van het object tijdens zijn trillende beweging.

V=A'ωcos(ωtsec)

Snelheid voor gegeven optrekmanoeuvreradius

De Snelheid voor een bepaalde optrekmanoeuvreradius van een vliegtuig is afhankelijk van de manoeuvreradius en de belastingsfactor van het vliegtuig. Deze formule geeft een vereenvoudigde benadering van de Snelheid die nodig is om de gewenste daalSnelheid te behouden tijdens de optrekmanoeuvre.

Vpull-up=R[g](n-1)

Snelheid voor gegeven pull-up manoeuvreerSnelheid

De Snelheid voor een bepaalde optrekmanoeuvreSnelheid is de Snelheid die een vliegtuig nodig heeft om een bepaalde stijgSnelheid aan te houden tijdens een optrekmanoeuvre. Deze formule berekent de Snelheid op basis van de zwaartekrachtversnelling, de pull-up-belastingsfactor en de draaiSnelheid. Het begrijpen en toepassen van deze formule is essentieel voor piloten en ingenieurs om veilige en effectieve optrekmanoeuvres te garanderen.

Vpull-up=[g]npull-up-1ω

Snelheid langs de Yaw-as voor een kleine aanvalshoek

Snelheid langs de gieras voor kleine aanvalshoek is een maatstaf voor de Snelheid waarmee de positie van een object langs de gieras verandert, ten opzichte van de beweging als gevolg van een kleine aanvalshoek. Deze Snelheid wordt berekend door de Snelheid langs de rolas te vermenigvuldigen met de aanvalshoek in radialen, wat een cruciale parameter vormt in de aerodynamica en vluchtdynamiek.

w=uα

Snelheid langs de rolas voor een kleine aanvalshoek

Snelheid langs rolas voor kleine aanvalshoek is een maatstaf voor de rotatieSnelheid van een object rond zijn rolas wanneer de aanvalshoek relatief klein is, en wordt berekend door de Snelheid langs gierbeweging te delen door de aanvalshoek in radialen.

u=wα

Snelheid langs de steekas voor een kleine zijsliphoek

Snelheid langs de steekas voor kleine zijsliphoek is een maatstaf voor de Snelheid van een vliegtuig of een object dat onder een kleine sliphoek beweegt, wat essentieel is voor het begrijpen en voorspellen van het traject en de stabiliteit ervan.

v=βu

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!