Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheid bij versnelde vlucht

De Snelheid bij versnelde vlucht verwijst naar de Snelheid van het vliegtuig terwijl het veranderingen in Snelheid of richting ondergaat om specifieke vluchtdoelen te bereiken. Deze Snelheid wordt doorgaans gemeten als de luchtSnelheid van het vliegtuig, wat de Snelheid is van het vliegtuig ten opzichte van de omringende lucht.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Snelheid van het vliegtuig bij een bepaalde stijgSnelheid

De Snelheid van een vliegtuig bij een gegeven stijgSnelheid is de Snelheid die een vliegtuig nodig heeft om een bepaalde stijgSnelheid te bereiken. Deze formule berekent de Snelheid door de stijgSnelheid te delen door de sinus van de vliegbaanhoek tijdens de klim. Het begrijpen en toepassen van deze formule is cruciaal voor piloten en ingenieurs om de klimprestaties te optimaliseren.

v=RCsin(γ)

Snelheid op zeeniveau gegeven liftcoëfficiënt

Snelheid op zeeniveau gegeven liftcoëfficiënt is een maatstaf die de Snelheid van een object op zeeniveau berekent, rekening houdend met het lichaamsgewicht, de luchtdichtheid op zeeniveau, het referentiegebied en de liftcoëfficiënt, en vormt een cruciale parameter in de aerodynamica en het vliegtuigontwerp .

V0=2Wbody[Std-Air-Density-Sea]SCL

Snelheid op hoogte

Snelheid op hoogte is een maatstaf voor de Snelheid van een object op een specifieke hoogte boven het aardoppervlak, rekening houdend met het lichaamsgewicht, de luchtdichtheid, het referentiegebied en de liftcoëfficiënt. Deze formule maakt de berekening van de Snelheid in aerodynamische systemen mogelijk. het bieden van waardevolle inzichten voor ingenieurs en onderzoekers op het gebied van lucht- en ruimtevaart en aerodynamica.

Valt=2Wbodyρ0SCL

Snelheid op hoogte gegeven Snelheid op zeeniveau

Gegeven Snelheid op hoogte Snelheid op zeeniveau is een maatstaf voor de Snelheid van een object op een bepaalde hoogte, berekend door de Snelheid op zeeniveau te vermenigvuldigen met de vierkantswortel van de verhouding tussen de standaard luchtdichtheid op zeeniveau en de luchtdichtheid op de opgegeven hoogte.

Valt=V0[Std-Air-Density-Sea]ρ0

Snelheid van bol in Falling Sphere Resistance-methode

De Snelheid van de bol in de formule van de weerstandsmethode voor vallende bolletjes is bekend door rekening te houden met de viscositeit van vloeistof of olie, de diameter van de bol en de sleepkracht.

U=FD3πμd

Snelheidsfactor voor commercieel gesneden tandwielen gemaakt met vormsnijders wanneer v minder dan 10

Snelheidsfactor voor commercieel gesneden tandwielen gemaakt met vormfrezen wanneer v kleiner dan 10 m/s de verhouding is van de statische belasting bij falen tot de dynamische belasting bij falen. Deze Snelheidsfactor Kv wordt gebruikt om de Lewis-vergelijking te wijzigen: Dus hoe hoger de spoedlijnSnelheid, hoe groter de buigspanning op de tandwieltanden.

Cv=33+v

Snelheidsfactor voor nauwkeurig gehobbelde en gegenereerde versnellingen wanneer v minder dan 20

Snelheidsfactor voor nauwkeurig gegolfde en gegenereerde tandwielen wanneer v minder dan 20 m/s de verhouding is van de statische belasting bij uitval tot de dynamische belasting bij uitval. Deze Snelheidsfactor Kv wordt gebruikt om de Lewis-vergelijking te wijzigen: Dus hoe hoger de spoedlijnSnelheid, hoe groter de buigspanning op de tandwieltanden.

Cv=66+v

Snelheidsfactor voor precisietandwielen met scheer- en slijpbewerkingen wanneer v groter dan 20

Snelheidsfactor voor precisietandwielen met scheer- en slijpbewerkingen wanneer v groter dan 20 m/s de verhouding is tussen de statische belasting bij uitval en de dynamische belasting bij uitval. Deze Snelheidsfactor Kv wordt gebruikt om de Lewis-vergelijking te wijzigen: Dus hoe hoger de spoedlijnSnelheid, hoe groter de buigspanning op de tandwieltanden.

Cv=5.65.6+v

Snelheid van zuiger gegeven stroomSnelheid in olietank

De Snelheid van de zuiger gegeven stroomSnelheid in olietank wordt gedefinieerd als de Snelheid waarmee de zuiger naar beneden gaat ten opzichte van de verticale afstand.

vpiston=((0.5dp|drRR-CHRμ)-uOiltank)(CHR)

Snelheid van zuigers voor drukval over lengte van zuiger

De Snelheid van de zuigers voor de drukval over de lengte van de zuiger wordt gedefinieerd als de Snelheid waarmee de zuiger naar beneden beweegt.

vpiston=ΔPf(6μLPCR3)(0.5D+CR)

Snelheid van zuiger voor verticale opwaartse kracht op zuiger

De Snelheid van de zuiger voor verticale opwaartse kracht op de zuiger wordt gedefinieerd als de gemiddelde Snelheid waarmee olie of zuiger in de tank beweegt.

vpiston=FvLPπμ(0.75((DCR)3)+1.5((DCR)2))

Snelheid voor kracht uitgeoefend op plaat in stroomrichting van jet

Snelheid voor kracht uitgeoefend op plaat in stroomrichting van jet is de mate van verandering van zijn positie ten opzichte van een referentiekader en is een functie van tijd.

vjet=Fjet[g]γfAJet(1+cos(θt))

Snelheid voor kracht uitgeoefend door straal op schoep in x-richting

De Snelheid voor kracht uitgeoefend door straal op schoep in x-richting is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van de tijd.

vjet=FxgγfAJet(cos(θ)+cos(∠D))

Snelheid gegeven Kracht uitgeoefend door Jet op Vane in Y-richting

De Snelheid gegeven kracht uitgeoefend door Jet on Vane in Y-richting wordt gedefinieerd als de Snelheid waarmee zijn positie verandert ten opzichte van een referentiekader, en is een functie van de tijd.

vjet=FygγfAJet((sin(θ))-sin(∠D))

Snelheid in diep water bij SI-systemen wordt rekening gehouden met eenheden van meters en seconden

De diepwaterSnelheid wanneer SI-systemen in eenheden van meters en seconden worden beschouwd, is de Snelheid waarmee een individuele golf zich voortbeweegt of "voortplant", staat bekend als de golfSnelheid. Voor een diepwatergolf is de Snelheid recht evenredig met de golfperiode, T.

Co=1.56T

Snelheid van kleinere katrol gegeven steekdiameter van beide katrollen

Snelheid van kleinere poelie gegeven spoeddiameter van beide poelies wordt gedefinieerd als Snelheid waarmee kleinere poelie van riemaandrijving roteert.

n1=Dn2d

Snelheid van grotere katrol gegeven Snelheid van kleinere katrol

Snelheid van grotere poelie gegeven Snelheid van kleinere poelie wordt gedefinieerd als de Snelheid waarmee de grotere poelie van de riemaandrijving draait.

n2=d(n1D)

Snelheidsverhouding van kettingaandrijvingen

De formule voor de Snelheidsverhouding van kettingaandrijvingen wordt gedefinieerd als de verhouding tussen het aantal tanden op het aandrijftandwiel en het aantal tanden op het aangedreven tandwiel in een kettingaandrijfsysteem, dat de Snelheid van de uitgaande as bepaalt in verhouding tot de ingaande as.

i=N1N2

Snelheidsfactor voor snijtanden van conische tandwielen

Snelheidsfactor voor snijtanden van Bevel Gear wordt gedefinieerd als de verhouding van de statische belasting bij het bezwijken van de tandwieltanden tot de dynamische belasting erop bij bezwijken.

Cv cut=66+v

Snelheidsfactor voor gegenereerde tanden van conische tandwielen

Snelheidsfactor voor gegenereerde tanden van Bevel Gear wordt gedefinieerd als de verhouding van de statische belasting bij het falen van de tandwieltanden tot de dynamische belasting erop bij falen.

Cv gen=5.65.6+v

Snelheid voor maximaal bereik gegeven bereik voor straalvliegtuigen

De Snelheid voor het maximaliseren van het bereik, het gegeven bereik voor straalvliegtuigen, verwijst naar de initiële Snelheid waarmee een projectiel moet worden gelanceerd om de grootste horizontale afstand te bereiken die wordt afgelegd onder invloed van de zwaartekracht. Deze formule voor het berekenen van de Snelheid die nodig is voor het maximaliseren van de lift-to-drag verhouding van een vliegtuig, rekening houdend met verschillende parameters zoals bereik, stroomspecifiek brandstofverbruik, vliegtuiggewicht en de maximale lift-to-drag-verhouding.

VL/D(max)=RcLDmaxratioln(WiWf)

Snelheid na expansie bij ideale stuwkracht

Snelheid na expansie gegeven ideale stuwkracht is een maatstaf voor de Snelheid die een object na expansie bereikt, berekend op basis van de ideale stuwkracht, massastroomSnelheid en vliegSnelheid van het object, wat waardevolle inzichten oplevert in de beweging en het gedrag van het object.

Ve=Tidealma+V

Snelheidsverhouding

De formule voor de Snelheidsverhouding wordt gedefinieerd als de verhouding tussen de rotatieSnelheid van het aangedreven tandwiel en die van het aandrijftandwiel in een mechanisch systeem. Hiermee kunnen de efficiëntie van de tandwieloverbrenging en de koppeloverdracht worden bepaald.

i=TdTdr

Snelheid van elektron in baan gegeven hoekSnelheid

De Snelheid van het elektron in de baan gegeven hoekSnelheid is een vectorgrootheid (het heeft zowel grootte als richting) en is de tijdsSnelheid van positieverandering (van een deeltje).

ve_AV=ωrorbit

Snelheid van elektron gegeven tijdsperiode van elektron

De Snelheid van elektron gegeven tijdsperiode van elektron is een vectorgrootheid (het heeft zowel grootte als richting) en is de tijdsSnelheid van positieverandering (van een deeltje).

velectron=2πrorbitT

Snelheid van klein element voor longitudinale trillingen

De formule voor de Snelheid van een klein element bij longitudinale trillingen wordt gedefinieerd als een maat voor de Snelheid van een klein element bij een longitudinale trilling, die wordt beïnvloed door de traagheid van de beperking, en wordt gebruikt om de trillingen in verschillende mechanische systemen te analyseren.

vs=xVlongitudinall

Snelheid van deeltje 1 gegeven kinetische energie

De Snelheid van deeltje 1 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van andere deeltjes en de totale kinetische energie van het systeem kennen. Aangezien de totale kinetische energie de som is van de individuele kinetische energie van beide deeltjes, blijft er maar één variabele over, en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.

v1=(2KE)-(m2v22)m1

Snelheid van deeltje 2 gegeven kinetische energie

De Snelheid van deeltje 2 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van een ander deeltje en de totale kinetische energie van het systeem kennen. Kinetische energie is het werk dat nodig is om een lichaam met een bepaalde massa vanuit rust te versnellen naar de aangegeven Snelheid. Omdat kinetische energie, KE, een som is van de kinetische energie voor elke massa, hebben we maar één variabele overgehouden en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.

v2=(2KE)-(m1v12)m2

Snelheid van deeltje 1

De formule Snelheid van deeltje 1 wordt gedefinieerd om Snelheid te relateren aan rotatiefrequentie en straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie tussen hoekSnelheid en frequentie (hoekSnelheid = 2 * pi * frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.

vp1=2πR1νrot

Snelheid van deeltje 2

De formule Velocity of Particle 2 is gedefinieerd om de Snelheid te relateren aan de rotatiefrequentie en de straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie van de hoekSnelheid met de frequentie (hoekSnelheid = 2*pi* frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.

v2=2πR2νrot

Snelheidscoëfficiënt

De formule voor de Snelheidscoëfficiënt wordt gedefinieerd als de verhouding tussen de werkelijke Snelheid van de straal bij de vena-contracta en de theoretische Snelheid bij de straal.

Cv=vaVth

Snelheidscoëfficiënt voor horizontale en verticale afstand

De formule van de Snelheidscoëfficiënt voor horizontale en verticale afstand wordt bepaald op basis van de experimentele bepaling van hydraulische coëfficiënten.

Cv=R4VH

Snelheid op afstand en retour in mijlen per uur, gegeven variabele tijd

De formule voor Snelheid bij het vervoer en terugbrengen in mijlen per uur, gegeven de variabele tijd, wordt gedefinieerd als de afgelegde afstand per tijdseenheid.

Smph=Hft+Rft88Tv

Snelheid bij transport en retour in kilometer per uur, gegeven variabele tijd

De Snelheid bij transport en retour in kilometer per uur, gegeven variabele tijd, wordt gedefinieerd als de Snelheid wanneer we vooraf informatie hebben over de retourafstand en de transportafstand.

Skmph=hm+Rmeter16.7Tv

Snelheid van zuiger of lichaam voor beweging van zuiger in Dash-Pot

De Snelheid van de zuiger of het lichaam voor de beweging van de zuiger in de dash-pot-formule is bekend, rekening houdend met het gewicht, de lengte en de diameter van de zuiger, de viscositeit van vloeistof of olie en de speling tussen de dash-pot en de zuiger.

V=4WbC33πLdp3μ

Snelheidsverdeling in ruwe turbulente stroming

De formule Snelheidsverdeling in ruwe turbulente stroming wordt gedefinieerd als de functie die beschrijft hoe moleculaire snelheden gemiddeld worden verdeeld in een ruwe, turbulente stroming.

v=5.75vshearlog10(30yks)

Snelheid van bewegende boot

De formule voor bewegende bootSnelheid wordt gedefinieerd als een stroommeter van het propellertype die vrij rond een verticale as kan bewegen en met een bepaalde Snelheid in een boot wordt gesleept.

vb=Vcos(θ)

Snelheidsconstante voor hetzelfde product volgens titratiemethode voor reactie van de tweede orde

De Snelheidsconstante voor hetzelfde product door de titratiemethode voor de tweede-ordereactieformule wordt gedefinieerd als het aftrekken van het inverse van het initiële volume en het tijdsinterval van het inverse van het volume van een reactant op tijdstip t en tijdsinterval.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Snelheidsverhouding van hydraulische koppeling:

De Snelheidsverhouding van de formule voor hydraulische koppelingen wordt gedefinieerd als een dimensieloze parameter die de prestaties van een hydraulische koppeling kenmerkt, door de verhouding tussen de turbineSnelheid en de pompSnelheid weer te geven. Het is een kritische factor bij het evalueren van de efficiëntie en effectiviteit van hydraulische systemen.

SR=ωtωp

Snelheid tijdens hardlopen Gedeeltelijk volledig gegeven ontlading

De Snelheid bij gedeeltelijke vulling van het riool wordt gedefinieerd als de stroomSnelheid wanneer het riool niet volledig gevuld is, beïnvloed door de diepte en de helling.

Vs=qa

Snelheid tijdens het hardlopen Volledig gegeven ontlading

De Snelheid tijdens het draaien op volle capaciteit wordt gedefinieerd als de Snelheid waarmee vloeistof door een volledig gevulde pijp of kanaal stroomt, doorgaans bij maximale capaciteit.

V=QA

Snelheid tijdens hardlopen Gedeeltelijk volledig gegeven Proportionele ontlading

De Snelheid bij gedeeltelijke vulling bij proportionele afvoer wordt gedefinieerd als de stroomSnelheid wanneer het riool niet volledig is gevuld, beïnvloed door de diepte en de helling.

Vs=PqVAa

Snelheid tijdens het hardlopen Volledig gegeven Proportionele ontlading

De Snelheid bij volledige vulling bij proportionele afvoer wordt gedefinieerd als de Snelheid van de vloeistofstroom in een buis wanneer deze volledig gevuld is, beïnvloed door de helling en ruwheid van de buis.

V=VsaPqA

Snelheidsconstante gegeven deoxygenatieconstante

De Snelheidsconstante, gegeven de formule voor deoxygenatieconstante, wordt gedefinieerd als de Snelheid van oxidatie van organisch materiaal en hangt af van de aard van het daarin aanwezige organische materiaal en de temperatuur.

K=2.3KD

Snelheid van jet voor dynamische stuwkracht uitgeoefend door jet op plaat

De Snelheid van jet voor dynamische stuwkracht uitgeoefend door jet op plaat wordt gegeven is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van de tijd.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Snelheid van wiel gegeven tangentiële Snelheid bij uitlaattip van schoep

De Snelheid van het wiel, gegeven de tangentiële Snelheid aan de uitlaatpunt van de schoep die rond de as draait, is het aantal omwentelingen van het object gedeeld door de tijd, gespecificeerd als omwentelingen per minuut (rpm).

Ω=vtangential602πrO

Snelheid gegeven Tangentieel Momentum van Vloeistof Slagschoepen bij Inlaat

Snelheid gegeven Tangentieel Momentum van Fluid Striking Schoepen bij Inlaat van een object is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van tijd.

u=TmGwf

Snelheid gegeven Angular Momentum bij Inlet

De Velocity gegeven Angular Momentum bij Inlet is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van de tijd.

vf=LGwfr

Snelheid gegeven Tangential Momentum of Fluid Striking Vanes bij Outlet

De Snelheid die wordt gegeven door het tangentiële momentum van vloeistofstotende schoepen bij de uitlaat is de Snelheid waarmee de positie ten opzichte van het referentiekader verandert en is een functie van de tijd.

u=TmGwf

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!