Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheid met behulp van waterstroomvergelijking

De Snelheid met behulp van waterstroomvergelijking wordt gedefinieerd als de stroomSnelheid wanneer het oppervlak van de dwarsdoorsnede van de buis en de waterstroom worden gegeven.

Vf=QwAcs

Snelheid op afstand en retour in mijlen per uur, gegeven variabele tijd

De formule voor Snelheid bij het vervoer en terugbrengen in mijlen per uur, gegeven de variabele tijd, wordt gedefinieerd als de afgelegde afstand per tijdseenheid.

Smph=Hft+Rft88Tv

Snelheid bij transport en retour in kilometer per uur, gegeven variabele tijd

De Snelheid bij transport en retour in kilometer per uur, gegeven variabele tijd, wordt gedefinieerd als de Snelheid wanneer we vooraf informatie hebben over de retourafstand en de transportafstand.

Skmph=hm+Rmeter16.7Tv

Snelheid van zuiger of lichaam voor beweging van zuiger in Dash-Pot

De Snelheid van de zuiger of het lichaam voor de beweging van de zuiger in de dash-pot-formule is bekend, rekening houdend met het gewicht, de lengte en de diameter van de zuiger, de viscositeit van vloeistof of olie en de speling tussen de dash-pot en de zuiger.

V=4WbC33πLdp3μ

Snelheidsverdeling in ruwe turbulente stroming

De formule Snelheidsverdeling in ruwe turbulente stroming wordt gedefinieerd als de functie die beschrijft hoe moleculaire snelheden gemiddeld worden verdeeld in een ruwe, turbulente stroming.

v=5.75vshearlog10(30yks)

Snelheid van bewegende boot

De formule voor bewegende bootSnelheid wordt gedefinieerd als een stroommeter van het propellertype die vrij rond een verticale as kan bewegen en met een bepaalde Snelheid in een boot wordt gesleept.

vb=Vcos(θ)

Snelheidsconstante voor hetzelfde product volgens titratiemethode voor reactie van de tweede orde

De Snelheidsconstante voor hetzelfde product door de titratiemethode voor de tweede-ordereactieformule wordt gedefinieerd als het aftrekken van het inverse van het initiële volume en het tijdsinterval van het inverse van het volume van een reactant op tijdstip t en tijdsinterval.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Snelheid van deeltjes in 3D-box

De Snelheid van het deeltje in de 3D-doosformule wordt gedefinieerd als een verhouding van tweemaal de lengte van de rechthoekige doos en de tijd tussen de botsing.

u3D=2Lt

Snelheid van gasmolecuul gegeven Kracht

De Snelheid van gasmolecuul gegeven kracht formule wordt gedefinieerd als de vierkantswortel van het product van de lengte van de rechthoekige doos en kracht per massa van het deeltje.

uF=FLm

Snelheid van gasmolecuul in 1D gegeven druk

De Snelheid van het gasmolecuul in 1D gegeven drukformule wordt gedefinieerd als onder de wortel van de verhouding van de gasdruk vermenigvuldigd met volume met de massa van het deeltje.

up=PgasVboxm

Snelheid van het lichaam gegeven momentum

Snelheid van een lichaam gegeven De formule voor impuls wordt gedefinieerd als een maat voor de Snelheid van een object in een specifieke richting. Deze wordt berekend door het momentum van het object te delen door de massa. Dit biedt een fundamenteel concept voor het begrijpen van de beweging van een object en de relatie ervan met kracht.

v=pmo

Snelheid van verandering van momentum gegeven versnelling en massa

VeranderingsSnelheid van impuls gegeven De formule voor versnelling en massa wordt gedefinieerd als een maat voor de Snelheid waarmee de impuls van een object verandert wanneer er een externe kracht op inwerkt. De massa van het object en de versnelling zijn de belangrijkste factoren die deze verandering beïnvloeden.

rm=moa

Snelheid van verandering van momentum gegeven initiële en eindsnelheden

De formule voor veranderingsSnelheid van impuls bij begin- en eindSnelheid wordt gedefinieerd als een maat voor de Snelheid waarmee het impuls van een object verandert in relatie tot de begin- en eindSnelheid. Hierdoor ontstaat inzicht in de kracht en versnelling van het object gedurende een bepaalde tijdsperiode.

rm=movf-vit

Snelheid van projectiel van Mach-kegel in samendrukbare vloeistofstroom

Snelheid van projectiel van Mach Cone in samendrukbare vloeistofstroom beschrijft de Snelheid waarmee het projectiel zich voortbeweegt wanneer het de geluidsSnelheid in het omringende medium bereikt of overschrijdt. Het begrijpen van deze Snelheid is cruciaal in aerodynamica en ballistische studies, omdat het het begin van schokgolven aangeeft en de aerodynamische uitdagingen die gepaard gaan met supersonische en hypersonische vluchten.

V=Csin(μ)

Snelheid van geluidsgolf rekening houdend met Mach-hoek in samendrukbare vloeistofstroom

Snelheid van geluidsgolven, rekening houdend met de Mach-hoek in samendrukbare vloeistofstroming, is van belang om te begrijpen hoe geluid zich door een medium voortplant wanneer de vloeistofSnelheid de geluidsSnelheid benadert of overschrijdt. Deze relatie helpt bij het voorspellen van het gedrag van schokgolven en de overdracht van geluid in verschillende omgevingen, essentieel in de lucht- en ruimtevaarttechniek, akoestiek en de studie van snelle vloeistofdynamica.

C=Vsin(μ)

Snelheidsverloop gegeven piëzometrisch verloop met schuifspanning

Het Snelheidsverloop gegeven piëzometrisch verloop met schuifspanning wordt gedefinieerd als verandering in Snelheid met betrekking tot radiale afstand.

VG=(γfμ)dh/dx0.5dradial

Snelheid tijdens hardlopen Gedeeltelijk volledig gegeven ontlading

De Snelheid bij gedeeltelijke vulling van het riool wordt gedefinieerd als de stroomSnelheid wanneer het riool niet volledig gevuld is, beïnvloed door de diepte en de helling.

Vs=qa

Snelheid tijdens het hardlopen Volledig gegeven ontlading

De Snelheid tijdens het draaien op volle capaciteit wordt gedefinieerd als de Snelheid waarmee vloeistof door een volledig gevulde pijp of kanaal stroomt, doorgaans bij maximale capaciteit.

V=QA

Snelheid tijdens hardlopen Gedeeltelijk volledig gegeven Proportionele ontlading

De Snelheid bij gedeeltelijke vulling bij proportionele afvoer wordt gedefinieerd als de stroomSnelheid wanneer het riool niet volledig is gevuld, beïnvloed door de diepte en de helling.

Vs=PqVAa

Snelheid tijdens het hardlopen Volledig gegeven Proportionele ontlading

De Snelheid bij volledige vulling bij proportionele afvoer wordt gedefinieerd als de Snelheid van de vloeistofstroom in een buis wanneer deze volledig gevuld is, beïnvloed door de helling en ruwheid van de buis.

V=VsaPqA

Snelheidsconstante gegeven deoxygenatieconstante

De Snelheidsconstante, gegeven de formule voor deoxygenatieconstante, wordt gedefinieerd als de Snelheid van oxidatie van organisch materiaal en hangt af van de aard van het daarin aanwezige organische materiaal en de temperatuur.

K=2.3KD

Snelheid van straal voor massa van vloeibare slagplaat

De straalSnelheid voor de massa van de vloeistofslagplaat is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van de tijd.

v=-((mfGγfAJet)-Vabsolute)

Snelheid van jet gegeven dynamische stuwkracht uitgeoefend door jet op plaat

De Snelheid van jet gegeven dynamische stuwkracht uitgeoefend door jet op plaat is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van de tijd.

v=-(mfGγfAJet-Vabsolute)

Snelheid voor werk gedaan als er geen energieverlies is

De Snelheid voor het uitgevoerde werk als er geen energieverlies is, is de mate van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.

vf=(w2Gwf)+v2

Snelheid gegeven efficiëntie van systeem

De Snelheid gegeven Efficiëntie van het systeem is de mate van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.

vf=v1-η

Snelheid op punt gegeven efficiëntie van systeem

De Velocity at Point gegeven Efficiëntie van het systeem is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.

v=1-ηvf

Snelheidsschaal gegeven relatief belang van viscositeit

De Snelheidsschaal, gegeven het relatieve belang van viscositeit, wordt gedefinieerd als de typische stromingssituatie langs de kust, bijvoorbeeld met een Snelheidsschaal van 1 ms−1 en een lengteschaal van 2 m. We vinden dat deze verhouding ongeveer 0,5 × 10−6 is, en dus kunnen we deze negeren. effecten van viscositeit.

V=vkLRi

Snelheid bij golfhoogten tussen 1 en 7 voet

Snelheid bij golfhoogten tussen 1 en 7 voet formule wordt gedefinieerd als Snelheid van de windgolf van het sectionele deel.

Vw=7+2ha

Snelheidsconstante voor onomkeerbare reactie van de eerste orde met behulp van log10

De Snelheidsconstante voor onomkeerbare reactie van de eerste orde met behulp van de log10-formule wordt gedefinieerd als de omzettingsSnelheid van reactanten in producten.

K1st order=-2.303log10(1-XA)t

Snelheidspotentieel voor 3D onsamendrukbare bronstroom

De formule voor Snelheidspotentieel voor 3D onsamendrukbare bronstroom wordt gedefinieerd als de functie van bronsterkte en radiale afstand voor driedimensionale bronstroom.

ϕs=-Λ4πr

Snelheidspotentieel voor 3D onsamendrukbare doubletstroom

De formule Snelheidspotentieel voor 3D onsamendrukbare doubletstroom berekent het Snelheidspotentieel dat een functie is van de sterkte van de doublet-, radiale en polaire coördinaat voor de driedimensionale onsamendrukbare doubletstroom.

ϕ=-μcos(θ)4πr2

Snelheidsconstante van derde orde onomkeerbare reactie met twee gelijke reactantconcentraties

De formule voor Snelheidsconstante van onomkeerbare reactie van de derde orde met twee gelijke reactantconcentraties wordt gedefinieerd als de evenredigheidsconstante in de vergelijking die de relatie uitdrukt tussen de Snelheid van chemische reactie en de concentraties van de reagerende stoffen.

k3=rCA(CB)2

Snelheidsconstante voor nulordereactie voor plugstroom

De formule Snelheidsconstante voor nulde-ordereactie voor plugstroom wordt gedefinieerd als de reactieSnelheid voor een nulde-ordereactie waarbij de fractionele volumeverandering aanzienlijk is.

k0=XA-PFRCo pfr𝛕pfr

Snelheidsconstante voor eerste-ordereactie voor plugstroom

De formule Snelheidsconstante voor eerste-ordereactie voor plugstroom wordt gedefinieerd als de evenredigheidsconstante die de relatie geeft tussen de reactieSnelheid en het eerste concentratievermogen van een van de reactanten waarbij de fractionele volumeverandering aanzienlijk is.

kplug flow=(1𝛕pfr)((1+εPFR)ln(11-XA-PFR)-(εPFRXA-PFR))

Snelheidsconstante voor eerste-ordereactie voor gemengde stroom

De formule Snelheidsconstante voor eerste-ordereactie voor gemengde stroom wordt gedefinieerd als de evenredigheidsconstante die de relatie geeft tussen reactieSnelheid en het eerste concentratievermogen van een van de reactanten voor gemengde stroom.

k1MFR=(1𝛕MFR)(XMFR(1+(εXMFR))1-XMFR)

Snelheidsconstante voor eerste orde reactie met behulp van Snelheidsconstante voor nulde orde reactie

De Snelheidsconstante voor reactie van de eerste orde met behulp van de formule Snelheidsconstante voor nulde-ordereactie wordt gedefinieerd als de evenredigheidsconstante van een reactie die van de eerste orde is, maar wordt gevolgd door een nulde-orde-reactie met behulp van de Snelheidsconstante voor nulde-orde-reactie.

kI=(1Δt)ln(CA0CA0-(k0Δt)-CR)

Snelheidsconstante voor nulde-ordereactie met behulp van Snelheidsconstante voor eerste-ordereactie

De Snelheidsconstante voor nulde orde reactie met behulp van de formule voor Snelheidsconstante voor eerste orde reactie wordt gedefinieerd als de evenredigheidsconstante voor nulde orde reactie die volgt op eerste orde reactie met behulp van Snelheidsconstante voor eerste orde reactie.

k0,k1=(CA0Δt)(1-exp((-kI)Δt)-(CRCA0))

Snelheid van fosforescentie

De formule van de Snelheid van fosforescentie wordt gedefinieerd als de emissieSnelheid van licht van triplet-geëxciteerde toestand naar singlet grondtoestand.

Rateph=Kp[MT]

Snelheid van emmer gegeven hoekSnelheid en straal

De formule voor hoekSnelheid en straal van de bakSnelheid wordt gedefinieerd als de tangentiële Snelheid van de bak die op het wiel is bevestigd.

Vb=ωDb2

Snelheid van bak gegeven diameter en toerental

De Snelheid van de emmer gegeven diameter en RPM-formule wordt gedefinieerd als de tangentiële Snelheid van de emmer die op het wiel is bevestigd.

Vb=πDbN60

Snelheid van straal uit mondstuk

De formule StraalSnelheid uit mondstuk wordt gedefinieerd als de Snelheid van de straal uit het mondstuk.

VJ=Cv2[g]H

Snelheid van constante droogperiode op basis van kritisch tot uiteindelijk vochtgehalte voor dalende Snelheidsperiode

De formule van de Snelheid van constante droogperiode op basis van het kritieke tot uiteindelijke vochtgehalte voor de formule van dalende Snelheid wordt gedefinieerd als de Snelheid van constante droogperiode, berekend op basis van de relatie met het droogproces in de periode van dalende Snelheid.

Nc=(WStf)(Xc-XEqA)(ln(Xc-XEqXf(Falling)-XEq))

Snelheid van constante droogperiode op basis van begin- tot eindvochtgehalte voor dalende Snelheidsperiode

De formule voor de Snelheid van een constante droogperiode op basis van het aanvankelijke tot het uiteindelijke vochtgehalte voor een dalende Snelheidsperiode wordt gedefinieerd als de Snelheid van een constante droogtijd op basis van de relatie met het droogproces in de periode van dalende Snelheid.

Nc=(WStf)(Xi(Falling)-XEqA)(ln(Xi(Falling)-XEqXf(Falling)-XEq))

Snelheid van constante droogperiode op basis van kritisch tot eindgewicht van vocht voor dalende Snelheidsperiode

De formule van de Snelheid van constante droogperiode op basis van kritisch tot eindgewicht van vocht voor dalende Snelheidsperiode wordt gedefinieerd als de Snelheid van constante droogperiode op basis van de relatie met het droogproces in de periode van dalende Snelheid.

Nc=(Mc-MEqtfA)(ln(Mc-MEqMf(Falling)-MEq))

Snelheid van constante droogperiode op basis van aanvankelijk tot eindgewicht van vocht voor dalende Snelheidsperiode

De formule voor de Snelheid van constante droogperiode op basis van het aanvankelijke tot eindgewicht van de vochtigheid voor de dalende Snelheidsperiode wordt gedefinieerd als de Snelheid van de constante droogperiode op basis van de relatie met het droogproces in de dalende Snelheidsperiode.

Nc=(Mi(Falling)-MEqtfA)(ln(Mi(Falling)-MEqMf(Falling)-MEq))

Snelheid van energieoverdracht op basis van afstanden en levensduur van de donor

De Snelheid van energieoverdracht met behulp van de formule voor afstanden en donorlevensduur wordt gedefinieerd als een vermenigvuldiging van de inverse van de donorlevensduur zonder FRET en tot de zesde macht van de verhouding van de kritische afstand tot de donoracceptorafstand.

KT=(1ζD)(R0r)6

Snelheid in kromlijnige beweging gegeven hoekSnelheid

Snelheid bij kromlijnige beweging gegeven De formule voor hoekSnelheid wordt gedefinieerd als een maat voor de Snelheid waarmee de positie van een object langs een gebogen pad verandert. Het beschrijft de beweging van een object dat in een cirkelvormig pad rond een vaste as beweegt, waarbij de grootte afhankelijk is van de hoekSnelheid en de straal van het cirkelvormige pad.

vcm=ωr

Snelheidsvoortplanting in verliesloze lijn

De formule voor Snelheidsvoortplanting in verliesloze lijn is omgekeerd evenredig met de vierkantswortel van het product van serie-inductie en seriecapaciteit van een lijn.

Vp=1lc

Snelheid van Electron

De Snelheid van het elektron verwijst naar zijn Snelheid en bewegingsrichting en wordt bepaald door het principe van behoud van energie. Het zegt in wezen dat de verandering in kinetische energie van het elektron gelijk is aan de verandering in potentiële energie die het ervaart als gevolg van het elektrische veld.

Vv=2[Charge-e]V[Mass-e]

Snelheid van elektronen in krachtvelden

De Snelheid van elektronen in krachtvelden wordt gebruikt om de Snelheid van een geladen deeltje te berekenen in een veld waar zowel een elektrisch als een magnetisch veld aanwezig is.

Vef=EIH

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!