Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheidsverhouding van samengestelde tandwieltrein

Snelheidsverhouding van samengestelde tandwieltrein is het product van de overbrengingsverhoudingen van elk tandwielpaar in de trein. Het wordt berekend door de individuele overbrengingsverhoudingen te vermenigvuldigen, waarbij elke overbrengingsverhouding de verhouding is van het aantal tanden op het aandrijftandwiel tot het aantal tanden op het aangedreven tandwiel.

i=PdP'd

Snelheidsregeling van Shunt DC-motor

De formule voor Snelheidsregeling van de shunt-gelijkstroommotor wordt gedefinieerd als de verandering in Snelheid van onbelast naar vollast, uitgedrukt als een fractie of percentage van de vollastSnelheid.

Nreg=(Nnl-NflNfl)100

Snelheid van serie DC-motor

De formule Speed of Series DC Motor wordt gedefinieerd als de Snelheid waarmee de rotor draait en Synchronous Speed is de Snelheid van het magnetische veld van de stator in de driefasige inductiemotor.

N=Vs-Ia(Ra+Rsh)KfΦ

Snelheid op gemiddelde positie

De formule voor de Snelheid bij gemiddelde positie wordt gedefinieerd als een maat voor de Snelheid van een object bij zijn gemiddelde positie tijdens vrije longitudinale trillingen. Hierdoor ontstaat inzicht in het oscillatiegedrag van het object en zijn eigen frequentie.

v=(ωfx)cos(ωfttotal)

Snelheid achter normale schok

De Snelheid achter normale schok berekent de Snelheid van een vloeistof stroomafwaarts van een normale schokgolf. Deze formule bevat parameters zoals de Snelheid stroomopwaarts van de schok, de verhouding van soortelijke warmte voor de vloeistof en het Mach-getal van de stroom. Het biedt waardevolle inzichten in de Snelheidsverandering als gevolg van het passeren van de schokgolf.

V2=V1γ+1(γ-1)+2M2

Snelheid voor gegeven draaiSnelheid

De Snelheid voor een bepaalde draaiSnelheid is een maatstaf voor de Snelheid van een vliegtuig tijdens een bocht, berekend op basis van de belastingsfactor, de zwaartekrachtversnelling en de draaiSnelheid.

V=[g]n2-1ω

Snelheid van het lichaam in eenvoudige harmonische beweging

De formule voor de Snelheid van een lichaam in eenvoudige harmonische beweging wordt gedefinieerd als de maximumSnelheid van een object terwijl het trilt rond zijn evenwichtspositie. Dit geeft een maat voor de kinetische energie van het object tijdens zijn trillende beweging.

V=A'ωcos(ωtsec)

Snelheid voor gegeven optrekmanoeuvreradius

De Snelheid voor een bepaalde optrekmanoeuvreradius van een vliegtuig is afhankelijk van de manoeuvreradius en de belastingsfactor van het vliegtuig. Deze formule geeft een vereenvoudigde benadering van de Snelheid die nodig is om de gewenste daalSnelheid te behouden tijdens de optrekmanoeuvre.

Vpull-up=R[g](n-1)

Snelheid voor gegeven pull-up manoeuvreerSnelheid

De Snelheid voor een bepaalde optrekmanoeuvreSnelheid is de Snelheid die een vliegtuig nodig heeft om een bepaalde stijgSnelheid aan te houden tijdens een optrekmanoeuvre. Deze formule berekent de Snelheid op basis van de zwaartekrachtversnelling, de pull-up-belastingsfactor en de draaiSnelheid. Het begrijpen en toepassen van deze formule is essentieel voor piloten en ingenieurs om veilige en effectieve optrekmanoeuvres te garanderen.

Vpull-up=[g]npull-up-1ω

Snelheid van vloeistof in pijp voor drukverlies bij ingang van pijp

De vloeistofSnelheid in de pijp voor drukverlies bij de ingang van de pijpformule is bekend, rekening houdend met het verlies van hoofd bij de ingang van de pijp, dat afhangt van de vorm van de ingang.

v=hi2[g]0.5

Snelheidscoëfficiënt gegeven ontladingscoëfficiënt

De Snelheidscoëfficiënt gegeven de formule voor de afvoercoëfficiënt wordt gedefinieerd als reductiefactor voor de theoretische Snelheid door de opening.

Cv=CdCc

Snelheidspotentieel voor uniforme onsamendrukbare stroming

Het Snelheidspotentieel voor uniforme onsamendrukbare stromingsfunctie (ϕ) neemt lineair toe met de afstand in de stromingsrichting (x), wat de uniforme aard van de stroming weerspiegelt. Bijgevolg is er geen variatie in het Snelheidspotentieel met betrekking tot de y-coördinaat, wat de homogeniteit van de stroom in de y-richting illustreert.

ϕ=Vx

Snelheid op punt op vleugelprofiel voor gegeven drukcoëfficiënt en vrije stroomSnelheid

Snelheid op punt op draagvleugel voor gegeven drukcoëfficiënt en vrije stroomSnelheid formule is product van vrije stroomSnelheid in vierkantswortel van één minus drukcoëfficiënt in onsamendrukbare stroming.

V=u2(1-Cp)

Snelheidspotentieel voor uniforme onsamendrukbare stroming in poolcoördinaten

Het Snelheidspotentieel voor uniforme onsamendrukbare stroming in poolcoördinaten stelt dat de functie direct evenredig is met de radiale afstand vanaf de oorsprong (r) en de cosinus van de hoekcoördinaat (θ), geschaald door de Snelheid van de stroming (U). Dit impliceert dat de waarde van de Snelheidspotentieelfunctie lineair toeneemt met de radiale afstand tot de oorsprong en varieert met de cosinus van de hoek, wat de uniforme aard van de stroming en de afhankelijkheid van de hoekrichting weerspiegelt.

ϕ=Vrcos(θ)

Snelheidspotentieel voor 2D-bronstroom

De Velocity Potential for 2-D Source Flow-formule stelt dat de functie direct evenredig is met de natuurlijke logaritme van de radiale afstand tot het bronpunt en de sterkte van de bron. Deze logaritmische relatie weerspiegelt de eigenschap van potentiële stroming waarbij de Snelheid logaritmisch afneemt met toenemende afstand tot de bron.

ϕ=Λ2πln(r)

Snelheid van warmteontwikkeling in primaire vervorming met behulp van energieverbruik

De Snelheid van warmteontwikkeling in primaire vervorming met behulp van de Snelheid van energieverbruik is de warmteSnelheid die wordt gegenereerd in de smalle zone rond het afschuifvlak bij bewerking.

Ps=Pc-Pf

Snelheid van warmteontwikkeling in secundaire vervormingszone

De mate van warmteontwikkeling in de secundaire vervormingszone is de warmte die wordt gegenereerd in de smalle zone rond het afschuifvlak bij machinale bewerking.

Pf=Pc-Ps

Snelheid van warmtetransport per chip gegeven Totale Snelheid van warmteopwekking

Snelheid van warmtetransport door chip gegeven Totale Snelheid van warmteontwikkeling wordt gedefinieerd als de hoeveelheid warmte die door de chip wordt getransporteerd, per tijdseenheid tijdens het snijden van metaal.

Φc=Pm-Φw-Φt

Snelheid van warmtegeleiding in werkstuk gegeven Totale Snelheid van warmteontwikkeling

De Snelheid van warmtegeleiding in het werkstuk gegeven Totale Snelheid van warmteopwekking is de Snelheid van warmte die in het werkstuk wordt overgebracht tijdens het metaalsnijproces.

Φw=Pm-Φc-Φt

Snelheid van warmtegeleiding in gereedschap gegeven Totale Snelheid van warmteontwikkeling

De Snelheid van warmtegeleiding in het gereedschap gegeven Totale Snelheid van warmteontwikkeling wordt gedefinieerd als de Snelheid van warmte die in het gereedschap wordt overgedragen tijdens het metaalsnijproces.

Φt=Pm-Φc-Φw

Snelheid op middellange afstand

De formule Velocity in Medium Given Distance wordt gedefinieerd als de Snelheid van de lichtgolf die wordt gebruikt in het EDM-instrument wanneer de golf van het ene punt naar het andere gaat.

c=2DΔt

Snelheid van zuiger gegeven stroomSnelheid in olietank

De Snelheid van de zuiger gegeven stroomSnelheid in olietank wordt gedefinieerd als de Snelheid waarmee de zuiger naar beneden gaat ten opzichte van de verticale afstand.

vpiston=((0.5dp|drRR-CHRμ)-uOiltank)(CHR)

Snelheid van zuigers voor drukval over lengte van zuiger

De Snelheid van de zuigers voor de drukval over de lengte van de zuiger wordt gedefinieerd als de Snelheid waarmee de zuiger naar beneden beweegt.

vpiston=ΔPf(6μLPCR3)(0.5D+CR)

Snelheid van zuiger voor verticale opwaartse kracht op zuiger

De Snelheid van de zuiger voor verticale opwaartse kracht op de zuiger wordt gedefinieerd als de gemiddelde Snelheid waarmee olie of zuiger in de tank beweegt.

vpiston=FvLPπμ(0.75((DCR)3)+1.5((DCR)2))

Snelheid voor kracht uitgeoefend op plaat in stroomrichting van jet

Snelheid voor kracht uitgeoefend op plaat in stroomrichting van jet is de mate van verandering van zijn positie ten opzichte van een referentiekader en is een functie van tijd.

vjet=Fjet[g]γfAJet(1+cos(θt))

Snelheid voor kracht uitgeoefend door straal op schoep in x-richting

De Snelheid voor kracht uitgeoefend door straal op schoep in x-richting is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van de tijd.

vjet=FxgγfAJet(cos(θ)+cos(∠D))

Snelheid gegeven Kracht uitgeoefend door Jet op Vane in Y-richting

De Snelheid gegeven kracht uitgeoefend door Jet on Vane in Y-richting wordt gedefinieerd als de Snelheid waarmee zijn positie verandert ten opzichte van een referentiekader, en is een functie van de tijd.

vjet=FygγfAJet((sin(θ))-sin(∠D))

Snelheid van voertuig gegeven vertragingsafstand of reactieafstand

Snelheid van voertuig gegeven vertraging Afstand of reactieafstand formule wordt gedefinieerd als de Snelheid waarmee het voertuig op het wegdek beweegt.

Vb=LDt

Snelheidspotentieel voor 3D onsamendrukbare bronstroom

De formule voor Snelheidspotentieel voor 3D onsamendrukbare bronstroom wordt gedefinieerd als de functie van bronsterkte en radiale afstand voor driedimensionale bronstroom.

ϕs=-Λ4πr

Snelheidspotentieel voor 3D onsamendrukbare doubletstroom

De formule Snelheidspotentieel voor 3D onsamendrukbare doubletstroom berekent het Snelheidspotentieel dat een functie is van de sterkte van de doublet-, radiale en polaire coördinaat voor de driedimensionale onsamendrukbare doubletstroom.

ϕ=-μcos(θ)4πr2

Snelheid van langzaam voertuig met behulp van OSD

Snelheid van langzaam voertuig met behulp van OSD wordt gebruikt om de Snelheid te vinden van het voertuig dat moet worden ingehaald door een snel bewegend voertuig wanneer OSD wordt gegeven.

Vb=OSD-VT-2ltr+T+1.4

Snelheidsconstante voor eerste stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie

De formule voor de Snelheidsconstante voor eerste stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie wordt gedefinieerd als de evenredigheidsconstante voor eerste stap reactie in twee stappen eerste orde onomkeerbare reactie in serie voor mixed flow reactor bij maximale tussenliggende concentratie.

kI=1k2(τR,max2)

Snelheidsconstante voor tweede stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie

De Snelheidsconstante voor tweede stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie formule wordt gedefinieerd als de evenredigheidsconstante voor tweede stap reactie in twee stappen eerste orde onomkeerbare reactie in serie voor mixed flow reactor bij maximale tussenliggende concentratie.

k2=1kI(τR,max2)

Snelheid van warmtegeleiding van motorwand

De formule voor warmtegeleiding van de motorwand wordt gedefinieerd als de hoeveelheid warmte die over de motorwand wordt overgedragen naar het koelmiddel rond de wand.

Qcond=(K)AΔTΔX

Snelheid van emmer gegeven hoekSnelheid en straal

De formule voor hoekSnelheid en straal van de bakSnelheid wordt gedefinieerd als de tangentiële Snelheid van de bak die op het wiel is bevestigd.

Vb=ωDb2

Snelheid van bak gegeven diameter en toerental

De Snelheid van de emmer gegeven diameter en RPM-formule wordt gedefinieerd als de tangentiële Snelheid van de emmer die op het wiel is bevestigd.

Vb=πDbN60

Snelheid van straal uit mondstuk

De formule StraalSnelheid uit mondstuk wordt gedefinieerd als de Snelheid van de straal uit het mondstuk.

VJ=Cv2[g]H

Snelheid van Electron

De Snelheid van het elektron verwijst naar zijn Snelheid en bewegingsrichting en wordt bepaald door het principe van behoud van energie. Het zegt in wezen dat de verandering in kinetische energie van het elektron gelijk is aan de verandering in potentiële energie die het ervaart als gevolg van het elektrische veld.

Vv=2[Charge-e]V[Mass-e]

Snelheid van elektronen in krachtvelden

De Snelheid van elektronen in krachtvelden wordt gebruikt om de Snelheid van een geladen deeltje te berekenen in een veld waar zowel een elektrisch als een magnetisch veld aanwezig is.

Vef=EIH

Snelheid van vloeistof gegeven dynamische druk

Snelheid van vloeistof gegeven Dynamische drukformule wordt gedefinieerd als een relatie die de Snelheid van vloeistofstroom uitdrukt op basis van de dynamische druk en de dichtheid van de vloeistof. Het is essentieel voor het begrijpen van vloeistofdynamica en het analyseren van het gedrag van vloeistoffen in verschillende mechanische systemen.

uFluid=Pdynamic2LD

Snelheid van vliegtuigen bij gegeven overtollig vermogen

De Snelheid van vliegtuigen bij een gegeven overschot aan vermogen is de luchtSnelheid die nodig is om een bepaalde stijgSnelheid te behouden, rekening houdend met het beschikbare overschot aan vermogen en de balans tussen stuwkracht en weerstandskrachten tijdens de klimvlucht. Het begrijpen en toepassen van deze formule is cruciaal voor piloten en ingenieurs om de klimprestaties te optimaliseren.

v=PexcessT-FD

Snelheid op elk punt voor de pitotbuiscoëfficiënt

De Snelheid op elk punt voor de coëfficiënt van de pitotbuisformule is bekend, rekening houdend met de stijging van de vloeistof in de buis boven het vrije oppervlak dat de hoogte is van de vloeistof in de bovenrand van de pitotbuis.

Vp=Cv29.81hp

Snelheid voor op normale schok van normale schokenergievergelijking

De Snelheid vóór de normale schok van de formule voor de vergelijking van de normale schokkenergie wordt gedefinieerd als de functie van de totale enthalpie en de Snelheid stroomopwaarts vóór de normale schok. De enthalpie die in de formule wordt gebruikt, is enthalpie per massa-eenheid.

V1=2(h2+V222-h1)

Snelheid achter normale schok uit vergelijking van normale schokenergie

De Snelheid achter normale schok uit de normale schokenergievergelijking berekent de Snelheid van een vloeistof stroomafwaarts van een normale schokgolf met behulp van de normale schokenergievergelijking. Deze formule omvat parameters zoals de enthalpie vóór en achter de schok en de Snelheid stroomopwaarts van de schok. Het biedt essentiële inzichten in de Snelheidsverandering als gevolg van het passeren van de schokgolf.

V2=2(h1+V122-h2)

Snelheidsvergelijking van hydraulica

De Snelheidsvergelijking van de hydrauliekformule wordt gedefinieerd als het product van het dwarsdoorsnedeoppervlak en de grondwaterSnelheid.

q=Av

Snelheid van zuiger

De formule voor de Snelheid van de zuiger wordt gedefinieerd als de Snelheid waarmee de zuiger beweegt in een zuigerpomp. Dit is een cruciaal onderdeel in verschillende industriële toepassingen en is een belangrijke factor bij het bepalen van de algehele prestaties en efficiëntie van de pomp.

vpiston=ωrsin(ωtsec)

Snelheid van vloeistof in pijp

De formule voor de vloeistofSnelheid in een leiding wordt gedefinieerd als de stroomSnelheid van vloeistof door een leiding in een systeem met heen-en-weergaande pompen. Deze wordt beïnvloed door factoren zoals de dwarsdoorsnede van de leiding, de hoekSnelheid, de straal en de tijd, die samen de beweging en de druk van de vloeistof beïnvloeden.

vl=Aaωrsin(ωts)

Snelheidsgradiënt gegeven drukgradiënt bij cilindrisch element

De Snelheidsgradiënt gegeven de drukgradiënt bij het cilindrische element wordt gedefinieerd als variatie van de Snelheid ten opzichte van de straal van de pijp.

VG=(12μ)dp|drdradial

Snelheid op elk punt in cilindrisch element

De Snelheid op elk punt in de formule voor het cilindrische element wordt gedefinieerd als de Snelheid waarmee vloeistof de pijp in stroomt en een parabolisch profiel vormt.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Snelheid bij uitlaat van mondstuk voor maximale vloeistofstroom

De Snelheid bij de uitlaat van het mondstuk voor een maximale vloeistofstroomSnelheid is cruciaal voor het bepalen van de efficiëntie en prestaties van vloeistofdynamische systemen. Het correleert direct met de drukverhouding over het mondstuk, de vloeistofdichtheid en de ontwerpkenmerken van het mondstuk, waardoor de stroomSnelheid en de voortstuwingsefficiëntie worden beïnvloed in toepassingen zoals raketmotoren en industriële spuitsystemen. Het begrijpen en optimaliseren van deze Snelheid is essentieel voor het bereiken van de gewenste operationele resultaten in technische en technologische toepassingen.

Vf=2yP1(y+1)ρa

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!