Snelheidspotentieel voor uniforme onsamendrukbare stromingHet Snelheidspotentieel voor uniforme onsamendrukbare stromingsfunctie (ϕ) neemt lineair toe met de afstand in de stromingsrichting (x), wat de uniforme aard van de stroming weerspiegelt. Bijgevolg is er geen variatie in het Snelheidspotentieel met betrekking tot de y-coördinaat, wat de homogeniteit van de stroom in de y-richting illustreert.
Snelheidspotentieel voor uniforme onsamendrukbare stroming in poolcoördinatenHet Snelheidspotentieel voor uniforme onsamendrukbare stroming in poolcoördinaten stelt dat de functie direct evenredig is met de radiale afstand vanaf de oorsprong (r) en de cosinus van de hoekcoördinaat (θ), geschaald door de Snelheid van de stroming (U). Dit impliceert dat de waarde van de Snelheidspotentieelfunctie lineair toeneemt met de radiale afstand tot de oorsprong en varieert met de cosinus van de hoek, wat de uniforme aard van de stroming en de afhankelijkheid van de hoekrichting weerspiegelt.
Snelheidspotentieel voor 2D-bronstroomDe Velocity Potential for 2-D Source Flow-formule stelt dat de functie direct evenredig is met de natuurlijke logaritme van de radiale afstand tot het bronpunt en de sterkte van de bron. Deze logaritmische relatie weerspiegelt de eigenschap van potentiële stroming waarbij de Snelheid logaritmisch afneemt met toenemende afstand tot de bron.
Snelheid van projectiel op bepaalde hoogte boven punt van projectieDe formule voor de Snelheid van een projectiel op een bepaalde hoogte boven het projectiepunt wordt gedefinieerd als de maatstaf voor de Snelheid van een projectiel op een bepaalde hoogte boven het projectiepunt, rekening houdend met de beginSnelheid, de versnelling als gevolg van de zwaartekracht en de hoogte boven het projectiepunt.
Snelheid op elk punt in cilindrisch elementDe Snelheid op elk punt in de formule voor het cilindrische element wordt gedefinieerd als de Snelheid waarmee vloeistof de pijp in stroomt en een parabolisch profiel vormt.
Snelheid bij uitlaat van mondstuk voor maximale vloeistofstroomDe Snelheid bij de uitlaat van het mondstuk voor een maximale vloeistofstroomSnelheid is cruciaal voor het bepalen van de efficiëntie en prestaties van vloeistofdynamische systemen. Het correleert direct met de drukverhouding over het mondstuk, de vloeistofdichtheid en de ontwerpkenmerken van het mondstuk, waardoor de stroomSnelheid en de voortstuwingsefficiëntie worden beïnvloed in toepassingen zoals raketmotoren en industriële spuitsystemen. Het begrijpen en optimaliseren van deze Snelheid is essentieel voor het bereiken van de gewenste operationele resultaten in technische en technologische toepassingen.
Snelheid van de bulkporiënDe Bulk Pore Velocity-formule wordt gedefinieerd als de werkelijke verplaatsingsSnelheid van water in het poreuze medium. De hydraulische geleidbaarheidsfuncties zijn geïntegreerd vanuit de porieSnelheidsverdeling.
Snelheid van vloeistofDe Snelheid van vloeistof wordt gedefinieerd als de Snelheid waarmee vloeistof of olie in de tank beweegt als gevolg van de toepassing van zuigerkracht.
Snelheid van de lente gegeven doorbuigingVeerkracht gegeven De doorbuigingsformule wordt gedefinieerd als een maat voor de stijfheid van een veer, wat de hoeveelheid kracht is die nodig is om één eenheid van vervorming of verplaatsing in een veer te produceren. Het is een cruciale parameter bij het ontwerp en de analyse van op veren gebaseerde systemen.
SnelheidsfactorDe Snelheidsfactor wordt gedefinieerd als de waarde die wordt gebruikt voor het verhogen van de statische belastingswaarde voor het overwegen van het dynamische effect voor het ontwerp van rails. Het wordt over het algemeen de Indiase formule genoemd.
Snelheid gegeven SnelheidsfactorSnelheid gegeven Snelheidsfactor is de Snelheid van de trein die wordt aangeduid als de Snelheid waarmee het object of de trein een specifieke afstand aflegt. eenheid in km/u.
Snelheidsfactor volgens de Duitse formuleDe Snelheidsfactor volgens de Duitse formule wordt gedefinieerd als de factor die wordt gebruikt voor het veranderen van de statische verticale belasting op het spoor naar dynamische belasting. Deze vergelijking wordt doorgaans gebruikt voor snelheden tot 100 km/u.
Snelheid met behulp van Duitse formuleDe Snelheid met Duitse formule wordt gedefinieerd als de Snelheid van de trein op het spoor. Over het algemeen zal de Snelheid lager zijn dan 100 km / u, om deze vergelijking te gebruiken.
Snelheid van golf gegeven twee dieptenDe golfSnelheid gegeven twee diepten wordt gedefinieerd als de toevoeging aan de normale waterSnelheid van de kanalen in open kanaalstroming.
Snelheid van golf in niet-uniforme stroomDe formule Celerity of Wave in Non Uniform Flow wordt gedefinieerd als de Snelheid van golfvoortplanting onder variërende stromingsomstandigheden.
Snelheid van golf uit Lagrange's SnelheidsvergelijkingDe Celerity of Wave van Lagrange's Celerity Equation-formule wordt gedefinieerd als plotselinge veranderingen van de stromingsdiepte die naast de normale waterSnelheid van de kanalen, Celerity (golfSnelheid) in de stroming creëert.
Snelheid van schurende deeltjesDe Snelheid van schurende deeltjes verwijst naar de Snelheid waarmee deze deeltjes naar het werkstukoppervlak reizen tijdens schurende bewerkingsprocessen zoals Abrasive Jet Machining (AJM) of slijpen. Het is een kritische parameter omdat deze rechtstreeks van invloed is op de materiaalverwijderingsSnelheid, de snijefficiëntie en de oppervlakteafwerking.
Snelheid van de golffaseDe Wave Phase Velocity Formula wordt gedefinieerd als de Snelheid waarmee een specifieke fase van een golf zich door een medium voortplant. Bij kusttechniek is het begrijpen van de golffaseSnelheid om verschillende redenen cruciaal. Ten eerste helpt het bij het voorspellen van de beweging van golven wanneer ze kuststructuren zoals golfbrekers, zeeweringen en havens naderen en ermee interacteren. Door de faseSnelheid te kennen, kunnen ingenieurs deze structuren zo ontwerpen dat ze effectief bestand zijn tegen de krachten die door golven worden uitgeoefend.
Snelheidsconstante van de onomkeerbare reactie van de derde ordeDe formule voor de Snelheidsconstante van de onomkeerbare reactie van de derde orde wordt gedefinieerd als de evenredigheidsconstante in de vergelijking die de relatie uitdrukt tussen de Snelheid van een chemische reactie en de concentraties van de reagerende stoffen.
SnelheidsfactorDe Velocity Factor-formule wordt gedefinieerd als de fractionele waarde die verband houdt met de voortplantingsSnelheid van een transmissielijn ten opzichte van de lichtSnelheid in een vacuüm. De Snelheidsfactor vertegenwoordigt de verhouding tussen de Snelheid van een elektromagnetische golf in de antennestructuur en de lichtSnelheid.
Snelheidsconstante voor tweede-ordereactie met ruimtetijd voor gemengde stroomDe formule Snelheidsconstante voor tweede-ordereactie met behulp van ruimtetijd voor gemengde stroom wordt gedefinieerd als de evenredigheidsconstante in de vergelijking die de relatie uitdrukt tussen de Snelheid van een chemische reactie en de concentraties van de reagerende stoffen voor gemengde stroom.
Snelheidsconstante op basis van het gewicht van de katalysator in batch-vaste stoffen en batch-vloeistoffenDe formule Snelheidsconstante gebaseerd op het gewicht van de katalysator in batch-vaste stoffen en batch-vloeistoffen wordt gedefinieerd als de Snelheidsconstante gebaseerd op het gewicht van de katalysator, een parameter die wordt gebruikt om de kinetiek van een chemische reactie te beschrijven, vooral in de context van katalyse. Het wordt gedefinieerd door de verhouding van de reactieSnelheid tot het gewicht van de aanwezige katalysator.
Snelheid van de volger voor de raaknok van de rolvolger als er contact is met rechte flankenSnelheid van volger voor rolvolger-raaknok als contact is met rechte flanken De formule wordt gedefinieerd als een maat voor de Snelheid van de volger in een nok-volgersysteem waarbij contact is met rechte flanken. Dit geeft inzicht in de kinematica van het systeem en maakt het mogelijk om efficiënte mechanische systemen te ontwerpen.
Snelheidscoëfficiënt voor Pelton WheelSnelheidscoëfficiënt voor Pelton Wheel is de verhouding tussen de werkelijke Snelheid van de waterstraal die het mondstuk verlaat en de theoretische Snelheid. Het houdt rekening met de verliezen als gevolg van wrijving en andere inefficiënties in het mondstuk en wordt gebruikt om de efficiëntie van de straalformatie te bepalen. Deze coëfficiënt is doorgaans kleiner dan 1.
Snelheid van volger van rolvolger Tangent Cam voor contact met neusDe formule voor de Snelheid van de volger van de rolvolger en de raaklijnnok voor contact met de neus wordt gedefinieerd als de Snelheid van de volger in een nok- en volgersysteem. Dit is een cruciale parameter bij het bepalen van de prestaties en efficiëntie van het systeem, met name wanneer de volger in contact is met de neus van de nok.
Snelheid achter normale schokDe Snelheid achter normale schok berekent de Snelheid van een vloeistof stroomafwaarts van een normale schokgolf. Deze formule bevat parameters zoals de Snelheid stroomopwaarts van de schok, de verhouding van soortelijke warmte voor de vloeistof en het Mach-getal van de stroom. Het biedt waardevolle inzichten in de Snelheidsverandering als gevolg van het passeren van de schokgolf.
Snelheidsdruk zoals gegeven door ASCE 7De Snelheidsdruk zoals gegeven door ASCE 7 wordt gedefinieerd als de Snelheidsdruk volgens de ASCE 7 Method II-normen, rekening houdend met winddruk, externe en interne drukcoëfficiënten.
Snelheid gegeven draaistraal voor hoge belastingsfactorDe Snelheid die wordt gegeven bij een bochtradius voor omstandigheden met een hoge belastingsfactor is de Snelheid die een vliegtuig nodig heeft om een specifieke draairadius te behouden terwijl er een aanzienlijke belastingsfactor wordt ervaren. Deze formule berekent de Snelheid op basis van de draairadius, de belastingsfactor en de zwaartekrachtversnelling. Het begrijpen en toepassen van deze formule is cruciaal voor piloten en ingenieurs bij het optimaliseren van de manoeuvreerbaarheid van vliegtuigen en het garanderen van de veiligheid tijdens manoeuvres met hoge belasting.
Snelheid van vloeistof bij vena-contractaDe vloeistofSnelheid bij de vena-contracta-formule is bekend, rekening houdend met het oppervlak van de buis en het maximale obstructiegebied in de buis, de samentrekkingscoëfficiënt en de Snelheid van de vloeistof in de buis.