Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheid achter normale schok volgens normale schokmomentumvergelijking

De Snelheid achter normale schok door middel van Normal Shock Momentum Equation berekent de Snelheid van een vloeistof stroomafwaarts van een normale schokgolf met behulp van de Normal Shock Momentum Equation. Deze formule omvat parameters zoals de statische druk vóór en achter de schok, de dichtheid vóór de schok en de Snelheid stroomopwaarts van de schok. Het biedt cruciale inzichten in de Snelheidsverandering als gevolg van het passeren van de schokgolf.

V2=P1-P2+ρ1V12ρ2

Snelheid vóór normale schok door normale schokmomentumvergelijking

De Snelheid vóór normale schok met behulp van Normal Shock Momentum Equation berekent de Snelheid van een vloeistof vóór een normale schokgolf met behulp van de Normal Shock Momentum Equation. Deze formule houdt rekening met parameters zoals de statische druk voor en achter de schok, de dichtheid achter de schok en de Snelheid stroomafwaarts van de schok. Het biedt cruciale informatie over de vloeistofSnelheid voordat de schokgolf wordt ervaren, wat helpt bij de analyse van het samendrukbare stromingsgedrag.

V1=P2-P1+ρ2V22ρ1

Snelheid van de zuiger tijdens extensie

De formule voor de Snelheid van de zuiger tijdens de extensie wordt gedefinieerd als de bewegingsSnelheid van een zuiger in een hydraulische actuator of motor. Dit is een kritische parameter bij het bepalen van de prestaties en efficiëntie van het systeem en wordt beïnvloed door de stroomSnelheid en het zuigeroppervlak.

vpiston=QextAp

Snelheid van de zuiger tijdens het terugtrekken

De formule voor de Snelheid van de zuiger tijdens het terugtrekken wordt gedefinieerd als de bewegingsSnelheid van een zuiger tijdens de terugtrekkingsfase in een hydraulisch systeem. Dit is van cruciaal belang voor het bepalen van de algehele prestaties en efficiëntie van hydraulische actuatoren en motoren.

vpiston=QretAp-Ar

Snelheid van bol in Falling Sphere Resistance-methode

De Snelheid van de bol in de formule van de weerstandsmethode voor vallende bolletjes is bekend door rekening te houden met de viscositeit van vloeistof of olie, de diameter van de bol en de sleepkracht.

U=FD3πμd

Snelheid bij sectie 1 van de Bernoulli-vergelijking

De Snelheid bij sectie 1 van de Bernoulli-vergelijking wordt gedefinieerd als Snelheid bij een bepaald deel van de buis.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Snelheid van vloeistof voor Reynold-getal

De vloeistofSnelheid voor de Reynold-getalformule is bekend, rekening houdend met de verhouding van het Reynolds-getal en de viscositeit van de vloeistof tot de dichtheid van de vloeistof en de lengte van de plaat.

V=ReμρfL

Snelheid van scheiding na impact

De formule voor scheidingsSnelheid na botsing wordt gedefinieerd als het product van de restitutiecoëfficiënt en het verschil tussen de beginSnelheid van het eerste lichaam en de beginSnelheid van het tweede lichaam.

vsep=e(u1-u2)

Snelheid van aanpak

De Snelheid van naderingsformule wordt gedefinieerd als de verhouding van het verschil tussen de eindSnelheid van het tweede lichaam en de eindSnelheid van het eerste lichaam tot de restitutiecoëfficiënt.

vapp=v2-v1e

Snelheidsfactor voor commercieel gesneden tandwielen gemaakt met vormsnijders wanneer v minder dan 10

Snelheidsfactor voor commercieel gesneden tandwielen gemaakt met vormfrezen wanneer v kleiner dan 10 m/s de verhouding is van de statische belasting bij falen tot de dynamische belasting bij falen. Deze Snelheidsfactor Kv wordt gebruikt om de Lewis-vergelijking te wijzigen: Dus hoe hoger de spoedlijnSnelheid, hoe groter de buigspanning op de tandwieltanden.

Cv=33+v

Snelheidsfactor voor nauwkeurig gehobbelde en gegenereerde versnellingen wanneer v minder dan 20

Snelheidsfactor voor nauwkeurig gegolfde en gegenereerde tandwielen wanneer v minder dan 20 m/s de verhouding is van de statische belasting bij uitval tot de dynamische belasting bij uitval. Deze Snelheidsfactor Kv wordt gebruikt om de Lewis-vergelijking te wijzigen: Dus hoe hoger de spoedlijnSnelheid, hoe groter de buigspanning op de tandwieltanden.

Cv=66+v

Snelheidsfactor voor precisietandwielen met scheer- en slijpbewerkingen wanneer v groter dan 20

Snelheidsfactor voor precisietandwielen met scheer- en slijpbewerkingen wanneer v groter dan 20 m/s de verhouding is tussen de statische belasting bij uitval en de dynamische belasting bij uitval. Deze Snelheidsfactor Kv wordt gebruikt om de Lewis-vergelijking te wijzigen: Dus hoe hoger de spoedlijnSnelheid, hoe groter de buigspanning op de tandwieltanden.

Cv=5.65.6+v

Snelheid van Chezy's formule

De Snelheid van de formule van Chezy is bekend als we de constante van Chezy beschouwen, en de vierkantswortel van de hydraulische gemiddelde diepte en de helling van het bed.

v=Cmi

Snelheidsverloop gegeven piëzometrisch verloop met schuifspanning

Het Snelheidsverloop gegeven piëzometrisch verloop met schuifspanning wordt gedefinieerd als verandering in Snelheid met betrekking tot radiale afstand.

VG=(γfμ)dh/dx0.5dradial

Snelheid regelen voor turbulente afwikkeling

De formule voor de bezinkingsSnelheid bij turbulente bezinking wordt gedefinieerd als de berekening van de bezinkingsSnelheid tijdens turbulente beweging.

Vst=(1.8g(G-1)Dp)

Snelheid regelen voor gemodificeerde Hazen-vergelijking

De bezinkSnelheid voor de gewijzigde formule van de Hazen-vergelijking wordt gedefinieerd als de berekening van de bezinkSnelheid wanneer we over voorafgaande informatie over andere parameters beschikken.

Vsm=(60.6Dp(G-1)((3T)+70100))

Snelheid regelen voor organische stof

De bezinkingsSnelheid voor organische stof (ook wel de "sedimentatieSnelheid" genoemd) wordt gedefinieerd als de eindSnelheid van een deeltje in stilstaande vloeistof.

vs(o)=0.12Dp((3T)+70)

Snelheid van jet gegeven normale stuwkracht parallel aan richting van jet

De Snelheid van jet gegeven normale stuwkracht evenwijdig aan richting van jet is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van tijd.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Snelheid van jet gegeven normale stuwkracht normaal naar richting van jet

De Snelheid van jet gegeven normale stuwkracht normaal tot richting van jet is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Snelheid van de riem gegeven spanning van de riem aan de strakke kant

Snelheid van de riem, gegeven de spanning van de riem aan de strakke kant, is een maat voor de rotatieSnelheid van de riem waarmee de rotatiekracht van de ene poelie naar de andere wordt overgebracht.

vb=((eμα)P2)-P1m((eμα)-1)

Snelheidscomponent langs horizontale x-as

De Snelheidscomponent langs de horizontale x-as wordt gedefinieerd als beïnvloed wanneer het oceaanoppervlak horizontaal blijft, de enige drijvende kracht komt van windschuifspanning.

ux=VseπzDFcos(45+(πzDF))

Snelheid aan oppervlak gegeven Snelheidscomponent langs horizontale x-as

De Snelheid aan het oppervlak, gegeven de Snelheidscomponent langs de horizontale x-as, wordt gedefinieerd als de Snelheid waarmee de positie verandert ten opzichte van het referentiekader, en is een functie van de tijd in de x-richting.

Vs=uxeπzDFcos(45+(πzDF))

Snelheid in huidig profiel in drie dimensies door poolcoördinaten te introduceren

De Snelheid in het stroomprofiel in drie dimensies door de introductie van poolcoördinaten wordt gedefinieerd als het exponentieel afnemen met de diepte en de hoek tussen de wind- en stromingsrichting neemt lineair toe met de diepte, met de klok mee.

VCurrent=VseπzDF

Snelheid aan oppervlak gegeven Snelheidsdetail van huidig profiel in drie dimensies

De Velocity at Surface gegeven Velocity detail van Current Profile in Three Dimensions wordt gedefinieerd als Snelheidsparameter aan de oppervlakte die het huidige profiel beïnvloedt.

Vs=veπzDF

Snelheidsconstante van tweede orde onomkeerbare reactie met gelijke reactantconcentraties

De formule voor de Snelheidsconstante van de onomkeerbare reactie van de tweede orde met gelijke reactantconcentraties wordt gedefinieerd als de evenredigheidsconstante in de vergelijking die de relatie uitdrukt tussen de Snelheid van een chemische reactie en de concentraties van de reagerende stoffen.

k2=r(CA)2

Snelheidsconstante van de onomkeerbare reactie van de derde orde

De formule voor de Snelheidsconstante van de onomkeerbare reactie van de derde orde wordt gedefinieerd als de evenredigheidsconstante in de vergelijking die de relatie uitdrukt tussen de Snelheid van een chemische reactie en de concentraties van de reagerende stoffen.

k3=rCACBCD

Snelheidsfactor

De Velocity Factor-formule wordt gedefinieerd als de fractionele waarde die verband houdt met de voortplantingsSnelheid van een transmissielijn ten opzichte van de lichtSnelheid in een vacuüm. De Snelheidsfactor vertegenwoordigt de verhouding tussen de Snelheid van een elektromagnetische golf in de antennestructuur en de lichtSnelheid.

Vf=1K

Snelheid van langzaam voertuig met behulp van OSD

Snelheid van langzaam voertuig met behulp van OSD wordt gebruikt om de Snelheid te vinden van het voertuig dat moet worden ingehaald door een snel bewegend voertuig wanneer OSD wordt gegeven.

Vb=OSD-VT-2ltr+T+1.4

Snelheid van convectiewarmteoverdracht tussen motorwand en koelvloeistof

De Snelheid van convectie-warmteoverdracht tussen de motorwand en de koelvloeistofformule wordt gedefinieerd als de totale hoeveelheid warmte die vanaf de vaste motorwand naar de koelvloeistof wordt afgevoerd.

Qc=hA(Ts-Tc)

Snelheid van inzittende ten opzichte van voertuig na botsing

De formule voor de Snelheid van de inzittende ten opzichte van het voertuig na een botsing wordt gedefinieerd als een maatstaf voor de Snelheid van een inzittende ten opzichte van het voertuig na een botsing. Dit is van cruciaal belang om de ernst van de impact en de daaruit voortvloeiende verwondingen te begrijpen.

Vr=Voδoccd

Snelheid van de satelliet in cirkelvormige LEO als functie van de hoogte

De formule voor de Snelheid van een satelliet in een cirkelvormige LEO als functie van de hoogte wordt gedefinieerd als de Snelheid waarmee een satelliet in een cirkelvormige lage baan om de aarde draait, afhankelijk van de hoogte van de satelliet boven het aardoppervlak. Dit is een cruciale parameter bij het ontwerp en de werking van satellieten in ruimtemissies.

v=[GM.Earth][Earth-R]+z

Snelheid van de satelliet in zijn cirkelvormige GEO-straal

De Snelheid van de satelliet in de formule voor de cirkelvormige GEO-straal wordt gedefinieerd als de Snelheid waarmee een satelliet in een cirkelvormige geostationaire baan om de aarde draait, afhankelijk van de zwaartekrachtconstante en de straal van de baan.

v=[GM.Earth]Rgso

Snelheidsconstante van fase tussen bel en wolk

De formule voor de Snelheidsconstante van de fase tussen bel en wolk wordt gedefinieerd als berekende Snelheidsconstante, wanneer er belvorming optreedt in de gefluïdiseerde reactor.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Snelheidsconstante van fase tussen Cloud-Wake en Emulsion

De Snelheidsconstante van de fase tussen de formule Cloud-Wake en Emulsion wordt gedefinieerd als de Snelheidsconstante die wordt berekend wanneer er borreling optreedt in de interfase in de gefluïdiseerde reactor volgens het Kunii-Levenspiel-model.

Kce=6.77(εmfDf Rubrdb3)12

Snelheid voor vertraagde coherentie in fotodissociatie

De formule voor Snelheid voor vertraagde coherentie in fotodissociatie wordt gedefinieerd als de grootte van de verandering van zijn positie in de tijd of de grootte van de verandering van zijn positie per tijdseenheid tijdens vertraagde coherentie tijdens fotodissociatie van het KrF-molecuul.

vcov=2(Vcov_R0-Vcov_R)μcov

Snelheid in snel gefluïdiseerd bed

De formule voor Snelheid in snel gefluïdiseerd bed verwijst naar de opwaartse Snelheid van het fluïdisatiegas dat wordt gebruikt om vaste deeltjes in het bed te suspenderen en fluïdiseren. Snelle gefluïdiseerde bedden worden gekenmerkt door hoge gassnelheden, en deze snelheden zijn doorgaans aanzienlijk groter dan de minimale fluïdisatieSnelheid.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Snelheid bij pneumatisch transport

De formule voor Snelheid bij pneumatisch transport wordt gedefinieerd als de Snelheid, doorgaans uitgedrukt als de lucht- of gasSnelheid op het punt van injectie of introductie van de vaste deeltjes in het transportsysteem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Snelheidsvoortplanting in verliesloze lijn

De formule voor Snelheidsvoortplanting in verliesloze lijn is omgekeerd evenredig met de vierkantswortel van het product van serie-inductie en seriecapaciteit van een lijn.

Vp=1lc

Snelheid van de volger voor de raaknok van de rolvolger als er contact is met rechte flanken

Snelheid van volger voor rolvolger-raaknok als contact is met rechte flanken De formule wordt gedefinieerd als een maat voor de Snelheid van de volger in een nok-volgersysteem waarbij contact is met rechte flanken. Dit geeft inzicht in de kinematica van het systeem en maakt het mogelijk om efficiënte mechanische systemen te ontwerpen.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Snelheidscoëfficiënt voor Pelton Wheel

Snelheidscoëfficiënt voor Pelton Wheel is de verhouding tussen de werkelijke Snelheid van de waterstraal die het mondstuk verlaat en de theoretische Snelheid. Het houdt rekening met de verliezen als gevolg van wrijving en andere inefficiënties in het mondstuk en wordt gebruikt om de efficiëntie van de straalformatie te bepalen. Deze coëfficiënt is doorgaans kleiner dan 1.

Cv=V12[g]H

Snelheid van volger van rolvolger Tangent Cam voor contact met neus

De formule voor de Snelheid van de volger van de rolvolger en de raaklijnnok voor contact met de neus wordt gedefinieerd als de Snelheid van de volger in een nok- en volgersysteem. Dit is een cruciale parameter bij het bepalen van de prestaties en efficiëntie van het systeem, met name wanneer de volger in contact is met de neus van de nok.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Snelheid van vliegtuigen bij gegeven overtollig vermogen

De Snelheid van vliegtuigen bij een gegeven overschot aan vermogen is de luchtSnelheid die nodig is om een bepaalde stijgSnelheid te behouden, rekening houdend met het beschikbare overschot aan vermogen en de balans tussen stuwkracht en weerstandskrachten tijdens de klimvlucht. Het begrijpen en toepassen van deze formule is cruciaal voor piloten en ingenieurs om de klimprestaties te optimaliseren.

v=PexcessT-FD

Snelheid op elk punt voor de pitotbuiscoëfficiënt

De Snelheid op elk punt voor de coëfficiënt van de pitotbuisformule is bekend, rekening houdend met de stijging van de vloeistof in de buis boven het vrije oppervlak dat de hoogte is van de vloeistof in de bovenrand van de pitotbuis.

Vp=Cv29.81hp

Snelheid voor op normale schok van normale schokenergievergelijking

De Snelheid vóór de normale schok van de formule voor de vergelijking van de normale schokkenergie wordt gedefinieerd als de functie van de totale enthalpie en de Snelheid stroomopwaarts vóór de normale schok. De enthalpie die in de formule wordt gebruikt, is enthalpie per massa-eenheid.

V1=2(h2+V222-h1)

Snelheid achter normale schok uit vergelijking van normale schokenergie

De Snelheid achter normale schok uit de normale schokenergievergelijking berekent de Snelheid van een vloeistof stroomafwaarts van een normale schokgolf met behulp van de normale schokenergievergelijking. Deze formule omvat parameters zoals de enthalpie vóór en achter de schok en de Snelheid stroomopwaarts van de schok. Het biedt essentiële inzichten in de Snelheidsverandering als gevolg van het passeren van de schokgolf.

V2=2(h1+V122-h2)

Snelheid van trillingen veroorzaakt door explosies

De Snelheid van trillingen veroorzaakt door stralen wordt gedefinieerd als de Snelheid waarmee de verplaatsing tijdens het trillingswerk verandert.

V=(λvf)

Snelheid van deeltjes verstoord door trillingen

De formule voor de Snelheid van deeltjes verstoord door trillingen wordt gedefinieerd als de Snelheid van deeltjes die worden beïnvloed door trillingen, waarbij de Snelheid en richting van hun beweging als reactie op verstoring worden uitgedrukt.

v=(2πfA)

Snelheid van deeltje één op afstand van explosie

De Snelheid van deeltje één op afstand van een explosie wordt gedefinieerd als de Snelheid van een deeltje vanaf het ontploffingspunt op een specifieke afstand.

v1=v2(D2D1)1.5

Snelheid van deeltje twee op afstand van explosie

De Snelheid van deeltje twee op afstand van explosie wordt gedefinieerd als de Snelheid van verandering van verplaatsing van deeltje.

v2=v1(D1D2)1.5

Snelheidsverdeling in ruwe turbulente stroming

De formule Snelheidsverdeling in ruwe turbulente stroming wordt gedefinieerd als de functie die beschrijft hoe moleculaire snelheden gemiddeld worden verdeeld in een ruwe, turbulente stroming.

v=5.75vshearlog10(30yks)

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!