SnelheidsverhoudingDe formule voor de Snelheidsverhouding wordt gedefinieerd als de verhouding tussen de rotatieSnelheid van het aangedreven tandwiel en die van het aandrijftandwiel in een mechanisch systeem. Hiermee kunnen de efficiëntie van de tandwieloverbrenging en de koppeloverdracht worden bepaald.
Snelheid van elektron in baan gegeven hoekSnelheidDe Snelheid van het elektron in de baan gegeven hoekSnelheid is een vectorgrootheid (het heeft zowel grootte als richting) en is de tijdsSnelheid van positieverandering (van een deeltje).
Snelheid van klein element voor longitudinale trillingenDe formule voor de Snelheid van een klein element bij longitudinale trillingen wordt gedefinieerd als een maat voor de Snelheid van een klein element bij een longitudinale trilling, die wordt beïnvloed door de traagheid van de beperking, en wordt gebruikt om de trillingen in verschillende mechanische systemen te analyseren.
Snelheidscoëfficiënt gegeven hoofdverliesDe formule van de Snelheidscoëfficiënt gegeven hoofdverlies is bekend door de vergelijking van Bernoulli toe te passen bij de uitlaat van het mondstuk en op de waterstraal.
Snelheid van rol gegeven verdichtingsproductie door verdichtingsapparatuurDe Snelheid van de wals volgens de formule voor verdichtingsproductie door verdichtingsapparatuur wordt gedefinieerd als de Snelheid waarmee verdichtingsapparatuur, zoals rollen, werkt tijdens het verdichtingsproces. Efficiënte snelheden dragen bij aan een hogere productiviteit bij bouwprojecten, omdat de apparatuur in minder tijd een groter gebied kan bestrijken zonder dat dit ten koste gaat van de kwaliteit.
Snelheid van zuiger of lichaam voor beweging van zuiger in Dash-PotDe Snelheid van de zuiger of het lichaam voor de beweging van de zuiger in de dash-pot-formule is bekend, rekening houdend met het gewicht, de lengte en de diameter van de zuiger, de viscositeit van vloeistof of olie en de speling tussen de dash-pot en de zuiger.
Snelheid van zuigerDe formule voor de Snelheid van de zuiger wordt gedefinieerd als de Snelheid waarmee de zuiger beweegt in een zuigerpomp. Dit is een cruciaal onderdeel in verschillende industriële toepassingen en is een belangrijke factor bij het bepalen van de algehele prestaties en efficiëntie van de pomp.
Snelheid van vloeistof in pijpDe formule voor de vloeistofSnelheid in een leiding wordt gedefinieerd als de stroomSnelheid van vloeistof door een leiding in een systeem met heen-en-weergaande pompen. Deze wordt beïnvloed door factoren zoals de dwarsdoorsnede van de leiding, de hoekSnelheid, de straal en de tijd, die samen de beweging en de druk van de vloeistof beïnvloeden.
Snelheidsverhouding van hydraulische koppeling:De Snelheidsverhouding van de formule voor hydraulische koppelingen wordt gedefinieerd als een dimensieloze parameter die de prestaties van een hydraulische koppeling kenmerkt, door de verhouding tussen de turbineSnelheid en de pompSnelheid weer te geven. Het is een kritische factor bij het evalueren van de efficiëntie en effectiviteit van hydraulische systemen.
Snelheid van Vane gegeven uitgeoefende kracht door JetDe Snelheid van de schoep gegeven uitgeoefende kracht door jet wordt gedefinieerd als de Snelheid waarmee de schoep beweegt als reactie op de impact van de jet. Het vertegenwoordigt de veranderingsSnelheid van de positie van de schoep en wordt bepaald door de grootte en richting van de kracht die door de jet wordt uitgeoefend.
Snelheid bij uitlaat gegeven vermogen geleverd aan wielDe Velocity at Outlet gegeven vermogen dat aan het wiel wordt geleverd, is de Snelheid waarmee de positie verandert. gemiddelde Snelheid is verplaatsing of positieverandering (een vectorhoeveelheid) per tijdsverhouding.
Snelheid van stroomveldenDe formule Velocity of Flow Fields wordt gedefinieerd als de Snelheid waarmee water van kop tot staart in het kanaal stroomt.
Snelheid terugstromingDe Return Flow Velocity-formule verwijst naar de Snelheid waarmee water terug beweegt naar de zee of een centraal punt nadat het is verplaatst door een golf, getij of een andere kracht tussen de scheepsromp en de bodem en zijkanten van het kanaal. Deze retourstroomSnelheid kan worden berekend voor een rechthoekige kanaal- en vatdoorsnede.
Snelheid op gewenste hoogteDe formule Snelheid op gewenste hoogte wordt gedefinieerd als de Snelheid van water op een gewenste hoogte binnen een stromingsprofiel. Het is essentieel om het type stroming en de relevante omstandigheden te begrijpen.
Snelheidscomponent langs horizontale x-asDe Snelheidscomponent langs de horizontale x-as wordt gedefinieerd als beïnvloed wanneer het oceaanoppervlak horizontaal blijft, de enige drijvende kracht komt van windschuifspanning.
Snelheid voor Froude ScalingDe Velocity for Froude Scaling-formule wordt gedefinieerd als de Snelheid die proportioneel is aangepast aan de vierkantswortel van de krachtverhouding.
Snelheid van water in zuig- en persleidingen door versnelling of vertragingDe Snelheid van het water in de aanzuig- en persleidingen als gevolg van de versnellings- of vertragingsformule wordt gedefinieerd als de maat voor de Snelheid van het water dat door de aanzuig- en persleidingen van een zuigerpomp stroomt, die wordt beïnvloed door de versnelling of vertraging van de beweging van de pomp.
Snelheid van het geluid stroomopwaarts van de geluidsgolfDe Snelheid van het geluid stroomopwaarts van de geluidsgolf kan worden bepaald door rekening te houden met de eigenschappen van het medium en de stromingsomstandigheden voorafgaand aan de geluidsgolf. In een isentropische stroming is de geluidsSnelheid gerelateerd aan het Mach-getal en de stroomSnelheid stroomopwaarts van de geluidsgolf.
Snelheid van het geluid stroomafwaarts van de geluidsgolfDe formule Snelheid van geluid stroomafwaarts van geluidsgolf berekent de stroomSnelheid stroomafwaarts van de geluidsgolf door gebruik te maken van de relatie tussen het Mach-getal en de geluidsSnelheid, ervan uitgaande dat de stroom isentropisch is. Het geeft aan hoe de stroomSnelheid achter de geluidsgolf zich verhoudt tot de geluidsSnelheid in het medium.
Snelheid van activeringActiveringsSnelheid is de Snelheid waarmee de minimale hoeveelheid extra energie die een reagerend molecuul nodig heeft om in product te worden omgezet.
Snelheid van deactiveringDeactiveringsSnelheid is de veranderingsSnelheid van chemische omzetting (X) met de tijd op stroom (t) waarbij de momentane waarde van dX/dt de numerieke waarde van de deactiveringsSnelheid is. Het is een niet-stralingsproces van excitatie van deeltjes van aangeslagen naar grondtoestand.
Snelheid van het voertuig gegeven remafstand na remwerkingDe formule voor de Snelheid van het voertuig bij een bepaalde remweg na het remmen wordt gedefinieerd als een meting van de Snelheid van een voertuig op het moment dat het begint te remmen. Dit is een cruciale parameter bij het bepalen van de remweg en de veiligheid van een voertuig onder verschillende weg- en verkeersomstandigheden.
Snelheid van cirkelbaanDe formule voor de Snelheid van een cirkelvormige baan wordt gedefinieerd als een maat voor de Snelheid waarmee een object in een cirkelvormige baan om een hemellichaam, zoals een planeet, draait, onder invloed van de zwaartekracht van het centrale lichaam en de straal van de baan.
Snelheid van progressieve golfDe Velocity of Progressive Wave-formule wordt gedefinieerd als een maatstaf voor de Snelheid waarmee een golf zich door een medium voortplant, beschrijft de Snelheid van verstoringsoverdracht in een fysiek systeem, en is een fundamenteel concept voor het begrijpen van golfdynamica en hun toepassingen in verschillende gebieden van de natuurkunde. .
Snelheid van progressieve golf met behulp van frequentieSnelheid van progressieve golven met behulp van de frequentieformule wordt gedefinieerd als een maatstaf voor de Snelheid waarmee een golf zich door een medium voortplant, wat essentieel is voor het begrijpen van verschillende fysieke verschijnselen, zoals geluidsgolven, lichtgolven en seismische golven, en cruciaal is in velden zoals natuurkunde, techniek en geologie.
Snelheid van progressieve golf gegeven hoekfrequentieSnelheid van progressieve golf gegeven hoekfrequentieformule wordt gedefinieerd als een maatstaf voor de Snelheid van een golf die in een specifieke richting beweegt, beïnvloed door de hoekfrequentie, en is essentieel voor het begrijpen van het gedrag van golven in verschillende fysieke systemen, inclusief geluid en licht golven.
Snelheid van klein element voor transversale trillingenDe formule voor de Snelheid van een klein element bij transversale trillingen wordt gedefinieerd als een maat voor de Snelheid van een klein element bij een transversale trilling, die wordt beïnvloed door de traagheid van de beperking, en wordt gebruikt om de beweging van deeltjes bij longitudinale en transversale trillingen te analyseren.
Snelheid van deeltje 1 gegeven kinetische energieDe Snelheid van deeltje 1 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van andere deeltjes en de totale kinetische energie van het systeem kennen. Aangezien de totale kinetische energie de som is van de individuele kinetische energie van beide deeltjes, blijft er maar één variabele over, en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.
Snelheid van deeltje 2 gegeven kinetische energieDe Snelheid van deeltje 2 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van een ander deeltje en de totale kinetische energie van het systeem kennen. Kinetische energie is het werk dat nodig is om een lichaam met een bepaalde massa vanuit rust te versnellen naar de aangegeven Snelheid. Omdat kinetische energie, KE, een som is van de kinetische energie voor elke massa, hebben we maar één variabele overgehouden en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.
Snelheid van deeltje 1De formule Snelheid van deeltje 1 wordt gedefinieerd om Snelheid te relateren aan rotatiefrequentie en straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie tussen hoekSnelheid en frequentie (hoekSnelheid = 2 * pi * frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.
Snelheid van deeltje 2De formule Velocity of Particle 2 is gedefinieerd om de Snelheid te relateren aan de rotatiefrequentie en de straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie van de hoekSnelheid met de frequentie (hoekSnelheid = 2*pi* frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.
SnelheidscoëfficiëntDe formule voor de Snelheidscoëfficiënt wordt gedefinieerd als de verhouding tussen de werkelijke Snelheid van de straal bij de vena-contracta en de theoretische Snelheid bij de straal.
Snelheid met behulp van waterstroomvergelijkingDe Snelheid met behulp van waterstroomvergelijking wordt gedefinieerd als de stroomSnelheid wanneer het oppervlak van de dwarsdoorsnede van de buis en de waterstroom worden gegeven.
Snelheid bij elke straal gegeven straal van pijp en maximale SnelheidSnelheid bij elke straal gegeven straal van de buis, en maximale Snelheid is gerelateerd aan de maximale Snelheid en de straal van de buis. De Snelheidsverdeling varieert doorgaans met de straal en volgt vaak een specifiek profiel, afhankelijk van de stromingsomstandigheden.