Snelheid van volger voor cirkelboogcamera als contact zich op cirkelflank bevindtDe formule voor de Snelheid van de volger voor een cirkelvormige boognok als het contactpunt zich op de cirkelvormige flank bevindt, wordt gedefinieerd als de maat voor de Snelheid van de volger in een cirkelvormig nokkenasmechanisme wanneer het contactpunt zich op de cirkelvormige flank bevindt. Dit is een cruciale parameter bij het ontwerpen en optimaliseren van nokvolgersystemen.
Snelheid achter normale schokDe Snelheid achter normale schok berekent de Snelheid van een vloeistof stroomafwaarts van een normale schokgolf. Deze formule bevat parameters zoals de Snelheid stroomopwaarts van de schok, de verhouding van soortelijke warmte voor de vloeistof en het Mach-getal van de stroom. Het biedt waardevolle inzichten in de Snelheidsverandering als gevolg van het passeren van de schokgolf.
Snelheidsdruk zoals gegeven door ASCE 7De Snelheidsdruk zoals gegeven door ASCE 7 wordt gedefinieerd als de Snelheidsdruk volgens de ASCE 7 Method II-normen, rekening houdend met winddruk, externe en interne drukcoëfficiënten.
Snelheid gegeven draaistraal voor hoge belastingsfactorDe Snelheid die wordt gegeven bij een bochtradius voor omstandigheden met een hoge belastingsfactor is de Snelheid die een vliegtuig nodig heeft om een specifieke draairadius te behouden terwijl er een aanzienlijke belastingsfactor wordt ervaren. Deze formule berekent de Snelheid op basis van de draairadius, de belastingsfactor en de zwaartekrachtversnelling. Het begrijpen en toepassen van deze formule is cruciaal voor piloten en ingenieurs bij het optimaliseren van de manoeuvreerbaarheid van vliegtuigen en het garanderen van de veiligheid tijdens manoeuvres met hoge belasting.
Snelheid langs de Yaw-as voor een kleine aanvalshoekSnelheid langs de gieras voor kleine aanvalshoek is een maatstaf voor de Snelheid waarmee de positie van een object langs de gieras verandert, ten opzichte van de beweging als gevolg van een kleine aanvalshoek. Deze Snelheid wordt berekend door de Snelheid langs de rolas te vermenigvuldigen met de aanvalshoek in radialen, wat een cruciale parameter vormt in de aerodynamica en vluchtdynamiek.
Snelheid langs de rolas voor een kleine aanvalshoekSnelheid langs rolas voor kleine aanvalshoek is een maatstaf voor de rotatieSnelheid van een object rond zijn rolas wanneer de aanvalshoek relatief klein is, en wordt berekend door de Snelheid langs gierbeweging te delen door de aanvalshoek in radialen.
Snelheid langs de steekas voor een kleine zijsliphoekSnelheid langs de steekas voor kleine zijsliphoek is een maatstaf voor de Snelheid van een vliegtuig of een object dat onder een kleine sliphoek beweegt, wat essentieel is voor het begrijpen en voorspellen van het traject en de stabiliteit ervan.
Snelheid langs de rolas voor een kleine zijsliphoekDe Snelheid langs de rolas voor kleine zijsliphoek is een maatstaf voor de Snelheid van het vliegtuig in de richting van de rolas wanneer de zijsliphoek klein is. Dit geeft inzicht in de stabiliteit en het reactievermogen van het vliegtuig tijdens de vlucht.
Snelheid van verandering van hoekmomentumDe formule voor de veranderingsSnelheid van het hoekmomentum wordt gedefinieerd als het product van het traagheidsmoment en het verschil van het uiteindelijke hoekmomentum, het initiële hoekmomentum, gedeeld door de tijd.
Snelheid gegeven efficiëntie van systeemDe Snelheid gegeven Efficiëntie van het systeem is de mate van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.
Snelheidsschaal gegeven relatief belang van viscositeitDe Snelheidsschaal, gegeven het relatieve belang van viscositeit, wordt gedefinieerd als de typische stromingssituatie langs de kust, bijvoorbeeld met een Snelheidsschaal van 1 ms−1 en een lengteschaal van 2 m. We vinden dat deze verhouding ongeveer 0,5 × 10−6 is, en dus kunnen we deze negeren. effecten van viscositeit.
Snelheidscoëfficiënt gegeven spuitmondefficiëntieSnelheidscoëfficiënt gegeven spuitmondefficiëntieformule wordt gedefinieerd als de verhouding van de werkelijke Snelheid van het gas dat uit een spuitmond komt, tot de Snelheid berekend onder ideale omstandigheden.
Snelheid van polycondensatieDe formule voor PolycondensatieSnelheid wordt gedefinieerd als de Snelheid waarmee de reactie verloopt tussen monomeren die twee of meer reactieve functionele groepen bevatten (bijvoorbeeld hydroxyl, carboxyl en amino) die met elkaar condenseren.
Snelheidsconstante voor eerste-ordereactie in vat iDe formule voor de Snelheidsconstante voor de eerste-ordereactie in de formule van Vat i wordt gedefinieerd als de evenredigheidsconstante die de relatie geeft tussen de Snelheid voor de eerste-ordereactie en het eerste concentratievermogen van een van de reactanten.
Snelheidsconstante voor gemengde stroomreactor met gewicht van katalysatorDe formule voor de Snelheidsconstante voor de gemengde stroomreactor met het gewicht van de katalysator wordt gedefinieerd als de Snelheidsconstante, berekend met behulp van de ruimtetijd van de reactor wanneer rekening wordt gehouden met het gewicht van de katalysator, de reagensconversie en de fractionele conversie.
Snelheidsconstante voor gemengde stroomreactor met katalysatorvolumeDe formule voor de Snelheidsconstante voor gemengde stroomreactor met katalysatorvolume wordt gedefinieerd als Snelheidsconstante, berekend met behulp van reagensconversie, fractionele conversie en ruimtetijd, berekend wanneer het katalysatorvolume in aanmerking wordt genomen. De Snelheidsuitdrukking voor een eerste-ordereactie in aanwezigheid van een katalysator wordt vaak aangepast om het effect van de katalysator op te nemen.
Snelheid van synchrone machineDe Snelheid van de synchrone machine in de stabiliteit van het energiesysteem wordt gedefinieerd als het product van het aantal polen in de machine en de rotorSnelheid van die machine.
Snelheidsverhouding van samengestelde tandwieltreinSnelheidsverhouding van samengestelde tandwieltrein is het product van de overbrengingsverhoudingen van elk tandwielpaar in de trein. Het wordt berekend door de individuele overbrengingsverhoudingen te vermenigvuldigen, waarbij elke overbrengingsverhouding de verhouding is van het aantal tanden op het aandrijftandwiel tot het aantal tanden op het aangedreven tandwiel.
Snelheid van elektron in baan gegeven hoekSnelheidDe Snelheid van het elektron in de baan gegeven hoekSnelheid is een vectorgrootheid (het heeft zowel grootte als richting) en is de tijdsSnelheid van positieverandering (van een deeltje).
Snelheid van klein element voor longitudinale trillingenDe formule voor de Snelheid van een klein element bij longitudinale trillingen wordt gedefinieerd als een maat voor de Snelheid van een klein element bij een longitudinale trilling, die wordt beïnvloed door de traagheid van de beperking, en wordt gebruikt om de trillingen in verschillende mechanische systemen te analyseren.
Snelheid van deeltje 1 gegeven kinetische energieDe Snelheid van deeltje 1 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van andere deeltjes en de totale kinetische energie van het systeem kennen. Aangezien de totale kinetische energie de som is van de individuele kinetische energie van beide deeltjes, blijft er maar één variabele over, en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.
Snelheid van deeltje 2 gegeven kinetische energieDe Snelheid van deeltje 2 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van een ander deeltje en de totale kinetische energie van het systeem kennen. Kinetische energie is het werk dat nodig is om een lichaam met een bepaalde massa vanuit rust te versnellen naar de aangegeven Snelheid. Omdat kinetische energie, KE, een som is van de kinetische energie voor elke massa, hebben we maar één variabele overgehouden en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.
Snelheid van deeltje 1De formule Snelheid van deeltje 1 wordt gedefinieerd om Snelheid te relateren aan rotatiefrequentie en straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie tussen hoekSnelheid en frequentie (hoekSnelheid = 2 * pi * frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.
Snelheid van deeltje 2De formule Velocity of Particle 2 is gedefinieerd om de Snelheid te relateren aan de rotatiefrequentie en de straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie van de hoekSnelheid met de frequentie (hoekSnelheid = 2*pi* frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.
SnelheidscoëfficiëntDe formule voor de Snelheidscoëfficiënt wordt gedefinieerd als de verhouding tussen de werkelijke Snelheid van de straal bij de vena-contracta en de theoretische Snelheid bij de straal.
Snelheid van deeltje in SHMDe Snelheid van het deeltje in de SHM-formule wordt gedefinieerd als een maatstaf voor de Snelheid van een deeltje dat een eenvoudige harmonische beweging ondergaat, berekend door de hoekfrequentie te vermenigvuldigen met de vierkantswortel van het verschil tussen de kwadraten van de maximale verplaatsing en de huidige verplaatsing.
Snelheid van rol gegeven verdichtingsproductie door verdichtingsapparatuurDe Snelheid van de wals volgens de formule voor verdichtingsproductie door verdichtingsapparatuur wordt gedefinieerd als de Snelheid waarmee verdichtingsapparatuur, zoals rollen, werkt tijdens het verdichtingsproces. Efficiënte snelheden dragen bij aan een hogere productiviteit bij bouwprojecten, omdat de apparatuur in minder tijd een groter gebied kan bestrijken zonder dat dit ten koste gaat van de kwaliteit.
Snelheid gegeven Pull-down manoeuvreradiusDe Snelheid die wordt gegeven bij de pull-down-manoeuvreradius is de Snelheid die een vliegtuig nodig heeft om een specifieke draairadius te behouden tijdens een pull-down-manoeuvre. Deze formule berekent de Snelheid op basis van de draairadius, de zwaartekrachtversnelling en de belastingsfactor. Het begrijpen en toepassen van deze formule is van cruciaal belang voor piloten en ingenieurs om veilige en gecontroleerde pull-down-manoeuvres te garanderen.
Snelheid voor gegeven pull-down-manoeuvreSnelheidDe Snelheid voor een bepaalde pull-down-manoeuvreSnelheid is afhankelijk van de belastingsfactor en de draaiSnelheid van het vliegtuig. Deze formule geeft een vereenvoudigde benadering van de Snelheid die nodig is om de gewenste daalSnelheid te behouden tijdens de pull-down-manoeuvre.
Snelheid van deeltjes in 3D-boxDe Snelheid van het deeltje in de 3D-doosformule wordt gedefinieerd als een verhouding van tweemaal de lengte van de rechthoekige doos en de tijd tussen de botsing.
Snelheid van gasmolecuul gegeven KrachtDe Snelheid van gasmolecuul gegeven kracht formule wordt gedefinieerd als de vierkantswortel van het product van de lengte van de rechthoekige doos en kracht per massa van het deeltje.
Snelheid van gasmolecuul in 1D gegeven drukDe Snelheid van het gasmolecuul in 1D gegeven drukformule wordt gedefinieerd als onder de wortel van de verhouding van de gasdruk vermenigvuldigd met volume met de massa van het deeltje.
Snelheid van het lichaam gegeven momentumSnelheid van een lichaam gegeven De formule voor impuls wordt gedefinieerd als een maat voor de Snelheid van een object in een specifieke richting. Deze wordt berekend door het momentum van het object te delen door de massa. Dit biedt een fundamenteel concept voor het begrijpen van de beweging van een object en de relatie ervan met kracht.
Snelheid van verandering van momentum gegeven versnelling en massaVeranderingsSnelheid van impuls gegeven De formule voor versnelling en massa wordt gedefinieerd als een maat voor de Snelheid waarmee de impuls van een object verandert wanneer er een externe kracht op inwerkt. De massa van het object en de versnelling zijn de belangrijkste factoren die deze verandering beïnvloeden.
Snelheid van verandering van momentum gegeven initiële en eindsnelhedenDe formule voor veranderingsSnelheid van impuls bij begin- en eindSnelheid wordt gedefinieerd als een maat voor de Snelheid waarmee het impuls van een object verandert in relatie tot de begin- en eindSnelheid. Hierdoor ontstaat inzicht in de kracht en versnelling van het object gedurende een bepaalde tijdsperiode.
Snelheid van projectiel van Mach-kegel in samendrukbare vloeistofstroomSnelheid van projectiel van Mach Cone in samendrukbare vloeistofstroom beschrijft de Snelheid waarmee het projectiel zich voortbeweegt wanneer het de geluidsSnelheid in het omringende medium bereikt of overschrijdt. Het begrijpen van deze Snelheid is cruciaal in aerodynamica en ballistische studies, omdat het het begin van schokgolven aangeeft en de aerodynamische uitdagingen die gepaard gaan met supersonische en hypersonische vluchten.
Snelheid van geluidsgolf rekening houdend met Mach-hoek in samendrukbare vloeistofstroomSnelheid van geluidsgolven, rekening houdend met de Mach-hoek in samendrukbare vloeistofstroming, is van belang om te begrijpen hoe geluid zich door een medium voortplant wanneer de vloeistofSnelheid de geluidsSnelheid benadert of overschrijdt. Deze relatie helpt bij het voorspellen van het gedrag van schokgolven en de overdracht van geluid in verschillende omgevingen, essentieel in de lucht- en ruimtevaarttechniek, akoestiek en de studie van snelle vloeistofdynamica.