Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheidsconstante van de eerste orde reactie

Snelheidsconstante van de eerste orde reactie is de evenredigheidsconstante met de beginconcentratie en de hoeveelheid reactant die heeft gereageerd of gevormd product.

Kh=ln(C0C0-x)treaction

Snelheid van progressieve golf

De Velocity of Progressive Wave-formule wordt gedefinieerd als een maatstaf voor de Snelheid waarmee een golf zich door een medium voortplant, beschrijft de Snelheid van verstoringsoverdracht in een fysiek systeem, en is een fundamenteel concept voor het begrijpen van golfdynamica en hun toepassingen in verschillende gebieden van de natuurkunde. .

Vw=λTW

Snelheid van progressieve golf met behulp van frequentie

Snelheid van progressieve golven met behulp van de frequentieformule wordt gedefinieerd als een maatstaf voor de Snelheid waarmee een golf zich door een medium voortplant, wat essentieel is voor het begrijpen van verschillende fysieke verschijnselen, zoals geluidsgolven, lichtgolven en seismische golven, en cruciaal is in velden zoals natuurkunde, techniek en geologie.

Vw=λfw

Snelheid van progressieve golf gegeven hoekfrequentie

Snelheid van progressieve golf gegeven hoekfrequentieformule wordt gedefinieerd als een maatstaf voor de Snelheid van een golf die in een specifieke richting beweegt, beïnvloed door de hoekfrequentie, en is essentieel voor het begrijpen van het gedrag van golven in verschillende fysieke systemen, inclusief geluid en licht golven.

Vw=λωf2π

Snelheid van deeltje 1 gegeven kinetische energie

De Snelheid van deeltje 1 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van andere deeltjes en de totale kinetische energie van het systeem kennen. Aangezien de totale kinetische energie de som is van de individuele kinetische energie van beide deeltjes, blijft er maar één variabele over, en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.

v1=(2KE)-(m2v22)m1

Snelheid van deeltje 2 gegeven kinetische energie

De Snelheid van deeltje 2 gegeven Kinetic Energy-formule is een methode om de Snelheid van een deeltje te berekenen wanneer we de Snelheid van een ander deeltje en de totale kinetische energie van het systeem kennen. Kinetische energie is het werk dat nodig is om een lichaam met een bepaalde massa vanuit rust te versnellen naar de aangegeven Snelheid. Omdat kinetische energie, KE, een som is van de kinetische energie voor elke massa, hebben we maar één variabele overgehouden en door de vergelijking op te lossen verkrijgen we de vereiste Snelheid.

v2=(2KE)-(m1v12)m2

Snelheid van deeltje 1

De formule Snelheid van deeltje 1 wordt gedefinieerd om Snelheid te relateren aan rotatiefrequentie en straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie tussen hoekSnelheid en frequentie (hoekSnelheid = 2 * pi * frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.

vp1=2πR1νrot

Snelheid van deeltje 2

De formule Velocity of Particle 2 is gedefinieerd om de Snelheid te relateren aan de rotatiefrequentie en de straal. De lineaire Snelheid is de straal maal de hoekSnelheid en verder de relatie van de hoekSnelheid met de frequentie (hoekSnelheid = 2*pi* frequentie). Dus volgens deze vergelijkingen is de Snelheid 2 * pi maal het product van de straal en de rotatiefrequentie.

v2=2πR2νrot

Snelheidscoëfficiënt

De formule voor de Snelheidscoëfficiënt wordt gedefinieerd als de verhouding tussen de werkelijke Snelheid van de straal bij de vena-contracta en de theoretische Snelheid bij de straal.

Cv=vaVth

Snelheidscoëfficiënt voor horizontale en verticale afstand

De formule van de Snelheidscoëfficiënt voor horizontale en verticale afstand wordt bepaald op basis van de experimentele bepaling van hydraulische coëfficiënten.

Cv=R4VH

Snelheid van deeltje in SHM

De Snelheid van het deeltje in de SHM-formule wordt gedefinieerd als een maatstaf voor de Snelheid van een deeltje dat een eenvoudige harmonische beweging ondergaat, berekend door de hoekfrequentie te vermenigvuldigen met de vierkantswortel van het verschil tussen de kwadraten van de maximale verplaatsing en de huidige verplaatsing.

V=ωSmax2-S2

Snelheid voor gegeven draaiSnelheid

De Snelheid voor een bepaalde draaiSnelheid is een maatstaf voor de Snelheid van een vliegtuig tijdens een bocht, berekend op basis van de belastingsfactor, de zwaartekrachtversnelling en de draaiSnelheid.

V=[g]n2-1ω

Snelheid van het lichaam in eenvoudige harmonische beweging

De formule voor de Snelheid van een lichaam in eenvoudige harmonische beweging wordt gedefinieerd als de maximumSnelheid van een object terwijl het trilt rond zijn evenwichtspositie. Dit geeft een maat voor de kinetische energie van het object tijdens zijn trillende beweging.

V=A'ωcos(ωtsec)

Snelheid voor gegeven optrekmanoeuvreradius

De Snelheid voor een bepaalde optrekmanoeuvreradius van een vliegtuig is afhankelijk van de manoeuvreradius en de belastingsfactor van het vliegtuig. Deze formule geeft een vereenvoudigde benadering van de Snelheid die nodig is om de gewenste daalSnelheid te behouden tijdens de optrekmanoeuvre.

Vpull-up=R[g](n-1)

Snelheid voor gegeven pull-up manoeuvreerSnelheid

De Snelheid voor een bepaalde optrekmanoeuvreSnelheid is de Snelheid die een vliegtuig nodig heeft om een bepaalde stijgSnelheid aan te houden tijdens een optrekmanoeuvre. Deze formule berekent de Snelheid op basis van de zwaartekrachtversnelling, de pull-up-belastingsfactor en de draaiSnelheid. Het begrijpen en toepassen van deze formule is essentieel voor piloten en ingenieurs om veilige en effectieve optrekmanoeuvres te garanderen.

Vpull-up=[g]npull-up-1ω

Snelheid van verandering van hoekmomentum

De formule voor de veranderingsSnelheid van het hoekmomentum wordt gedefinieerd als het product van het traagheidsmoment en het verschil van het uiteindelijke hoekmomentum, het initiële hoekmomentum, gedeeld door de tijd.

Lr=I(ωf-ωo)trm

Snelheid van de bulkporiën

De Bulk Pore Velocity-formule wordt gedefinieerd als de werkelijke verplaatsingsSnelheid van water in het poreuze medium. De hydraulische geleidbaarheidsfuncties zijn geïntegreerd vanuit de porieSnelheidsverdeling.

Va=Vη

Snelheid van straal voor massa van vloeibare slagplaat

De straalSnelheid voor de massa van de vloeistofslagplaat is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van de tijd.

v=-((mfGγfAJet)-Vabsolute)

Snelheid van jet gegeven dynamische stuwkracht uitgeoefend door jet op plaat

De Snelheid van jet gegeven dynamische stuwkracht uitgeoefend door jet op plaat is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van de tijd.

v=-(mfGγfAJet-Vabsolute)

Snelheid van wiel gegeven tangentiële Snelheid bij inlaatpunt van vaan

De Snelheid van het wiel, gegeven de tangentiële Snelheid bij de inlaattip van de schoep die rond een as draait, is het aantal omwentelingen van het object gedeeld door de tijd, gespecificeerd als omwentelingen per minuut (rpm).

Ω=vtangential602πr

Snelheid terugstroming

De Return Flow Velocity-formule verwijst naar de Snelheid waarmee water terug beweegt naar de zee of een centraal punt nadat het is verplaatst door een golf, getij of een andere kracht tussen de scheepsromp en de bodem en zijkanten van het kanaal. Deze retourstroomSnelheid kan worden berekend voor een rechthoekige kanaal- en vatdoorsnede.

Vr=Vs((WDW(D-Δd)-Am)-1)

Snelheid op gewenste hoogte

De formule Snelheid op gewenste hoogte wordt gedefinieerd als de Snelheid van water op een gewenste hoogte binnen een stromingsprofiel. Het is essentieel om het type stroming en de relevante omstandigheden te begrijpen.

Vz=V10(z10)0.11

Snelheidsgradiënt gegeven schuifkracht per oppervlakte-eenheid of schuifspanning

De Snelheidsgradiënt gegeven de formule voor schuifkracht per oppervlakte-eenheid of schuifspanning wordt gedefinieerd als het Snelheidsverschil tussen aangrenzende vloeistoflagen.

du/dy=σμ

Snelheid van de bovenste plaat gegeven schuifkracht per oppervlakte-eenheid of schuifspanning

De Snelheid van de bovenste plaat, gegeven de formule voor schuifkracht per oppervlakte-eenheid of schuifspanningsformule wordt gedefinieerd als de twee parallelle platen, elk met een oppervlakte-eenheid, gescheiden door de vloeistofvulbreedte tussen de platen.

Vf=σyμ

Snelheidsconstante voor eerste-ordereactie voor plugstroom of voor oneindige reactoren

De formule Snelheidsconstante voor eerste-ordereactie voor plugstroom of oneindige reactoren wordt gedefinieerd als de evenredigheidsconstante die de relatie geeft tussen Snelheid voor eerste-ordereactie en het eerste concentratievermogen van een van de reactanten.

k'=(1𝛕p)ln(CoC)

Snelheidsconstante voor eerste-ordereactie in vat i

De formule voor de Snelheidsconstante voor de eerste-ordereactie in de formule van Vat i wordt gedefinieerd als de evenredigheidsconstante die de relatie geeft tussen de Snelheid voor de eerste-ordereactie en het eerste concentratievermogen van een van de reactanten.

k'=C i-1-CiCi𝛕i

Snelheidsconstante voor gemengde stroomreactor met gewicht van katalysator

De formule voor de Snelheidsconstante voor de gemengde stroomreactor met het gewicht van de katalysator wordt gedefinieerd als de Snelheidsconstante, berekend met behulp van de ruimtetijd van de reactor wanneer rekening wordt gehouden met het gewicht van de katalysator, de reagensconversie en de fractionele conversie.

k '=XA,out(1+εXA,out)(1-XA,out)𝛕'

Snelheidsconstante voor gemengde stroomreactor met katalysatorvolume

De formule voor de Snelheidsconstante voor gemengde stroomreactor met katalysatorvolume wordt gedefinieerd als Snelheidsconstante, berekend met behulp van reagensconversie, fractionele conversie en ruimtetijd, berekend wanneer het katalysatorvolume in aanmerking wordt genomen. De Snelheidsuitdrukking voor een eerste-ordereactie in aanwezigheid van een katalysator wordt vaak aangepast om het effect van de katalysator op te nemen.

k'''=XA,out(1+εXA,out)(1-XA,out)𝛕'''

Snelheidsvoortplanting in verliesloze lijn

De formule voor Snelheidsvoortplanting in verliesloze lijn is omgekeerd evenredig met de vierkantswortel van het product van serie-inductie en seriecapaciteit van een lijn.

Vp=1lc

Snelheid van geleidepoelie

De formule voor de Snelheid van de geleiderol wordt gedefinieerd als een maat voor de rotatieSnelheid van de geleiderol in een mechanisch systeem. Deze is cruciaal voor het bepalen van de beweging van het systeem, met name in de context van de bewegingskinetiek, waarbij de Snelheid van de geleiderol de algehele prestatie en efficiëntie van het systeem beïnvloedt.

NP=NDdd1

Snelheid van object in cirkelvormige beweging

De formule voor de Snelheid van een object in cirkelvormige beweging wordt gedefinieerd als de Snelheid waarmee een object langs een cirkelvormig pad beweegt, beïnvloed door de straal van de cirkel en de rotatiefrequentie, en biedt een fundamenteel concept voor het begrijpen van cirkelvormige beweging en de toepassingen ervan in de natuurkunde en techniek. .

V=2πrf

Snelheid van de volger na tijd t voor cycloïdale beweging

De formule voor de Snelheid van de volger na tijd t voor cycloïde beweging wordt gedefinieerd als de maat voor de Snelheid van de volger in een nokkenas- en volgersysteem, dat een cycloïde beweging ondergaat, en beschrijft de beweging van de volger terwijl deze roteert en in een cirkelvormig pad beweegt.

v=ωSθo(1-cos(2πθrotationθo))

Snelheid van het vliegtuig bij een bepaalde stijgSnelheid

De Snelheid van een vliegtuig bij een gegeven stijgSnelheid is de Snelheid die een vliegtuig nodig heeft om een bepaalde stijgSnelheid te bereiken. Deze formule berekent de Snelheid door de stijgSnelheid te delen door de sinus van de vliegbaanhoek tijdens de klim. Het begrijpen en toepassen van deze formule is cruciaal voor piloten en ingenieurs om de klimprestaties te optimaliseren.

v=RCsin(γ)

Snelheid op zeeniveau gegeven liftcoëfficiënt

Snelheid op zeeniveau gegeven liftcoëfficiënt is een maatstaf die de Snelheid van een object op zeeniveau berekent, rekening houdend met het lichaamsgewicht, de luchtdichtheid op zeeniveau, het referentiegebied en de liftcoëfficiënt, en vormt een cruciale parameter in de aerodynamica en het vliegtuigontwerp .

V0=2Wbody[Std-Air-Density-Sea]SCL

Snelheid op hoogte

Snelheid op hoogte is een maatstaf voor de Snelheid van een object op een specifieke hoogte boven het aardoppervlak, rekening houdend met het lichaamsgewicht, de luchtdichtheid, het referentiegebied en de liftcoëfficiënt. Deze formule maakt de berekening van de Snelheid in aerodynamische systemen mogelijk. het bieden van waardevolle inzichten voor ingenieurs en onderzoekers op het gebied van lucht- en ruimtevaart en aerodynamica.

Valt=2Wbodyρ0SCL

Snelheid op hoogte gegeven Snelheid op zeeniveau

Gegeven Snelheid op hoogte Snelheid op zeeniveau is een maatstaf voor de Snelheid van een object op een bepaalde hoogte, berekend door de Snelheid op zeeniveau te vermenigvuldigen met de vierkantswortel van de verhouding tussen de standaard luchtdichtheid op zeeniveau en de luchtdichtheid op de opgegeven hoogte.

Valt=V0[Std-Air-Density-Sea]ρ0

Snelheid van warmteontwikkeling in primaire vervorming met behulp van energieverbruik

De Snelheid van warmteontwikkeling in primaire vervorming met behulp van de Snelheid van energieverbruik is de warmteSnelheid die wordt gegenereerd in de smalle zone rond het afschuifvlak bij bewerking.

Ps=Pc-Pf

Snelheid van warmteontwikkeling in secundaire vervormingszone

De mate van warmteontwikkeling in de secundaire vervormingszone is de warmte die wordt gegenereerd in de smalle zone rond het afschuifvlak bij machinale bewerking.

Pf=Pc-Ps

Snelheid van warmtetransport per chip gegeven Totale Snelheid van warmteopwekking

Snelheid van warmtetransport door chip gegeven Totale Snelheid van warmteontwikkeling wordt gedefinieerd als de hoeveelheid warmte die door de chip wordt getransporteerd, per tijdseenheid tijdens het snijden van metaal.

Φc=Pm-Φw-Φt

Snelheid van warmtegeleiding in werkstuk gegeven Totale Snelheid van warmteontwikkeling

De Snelheid van warmtegeleiding in het werkstuk gegeven Totale Snelheid van warmteopwekking is de Snelheid van warmte die in het werkstuk wordt overgebracht tijdens het metaalsnijproces.

Φw=Pm-Φc-Φt

Snelheid van warmtegeleiding in gereedschap gegeven Totale Snelheid van warmteontwikkeling

De Snelheid van warmtegeleiding in het gereedschap gegeven Totale Snelheid van warmteontwikkeling wordt gedefinieerd als de Snelheid van warmte die in het gereedschap wordt overgedragen tijdens het metaalsnijproces.

Φt=Pm-Φc-Φw

Snelheidsconstante gegeven zuurstofequivalent

De Snelheidsconstante gegeven zuurstofequivalentformule wordt gedefinieerd als de Snelheid van oxidatie van organisch materiaal en hangt af van de aard van organisch materiaal en de temperatuur.

Kh=c-log(Lt,e)t

Snelheidsconstante gegeven Deoxygenatieconstante

De Snelheidsconstante, gegeven de zuurstofconstante-formule, wordt gedefinieerd als de Snelheid van oxidatie van organisch materiaal. Het hangt af van de temperatuur en de aard van het organische materiaal dat in het rioolwater aanwezig is.

K=KD0.434

Snelheid van zuiger voor afschuifkracht weerstand tegen beweging van zuiger

De Snelheid van de zuiger voor de weerstand tegen schuifkracht van de zuiger wordt gedefinieerd als de gemiddelde Snelheid waarmee de zuiger beweegt.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Snelheid van vloeistof

De Snelheid van vloeistof wordt gedefinieerd als de Snelheid waarmee vloeistof of olie in de tank beweegt als gevolg van de toepassing van zuigerkracht.

uOiltank=dp|dr0.5RR-CHRμ

Snelheid van zuiger voor drukvermindering over lengte van zuiger

De Snelheid van de zuiger voor drukvermindering over de lengte van de zuiger wordt gedefinieerd als de Snelheid waarmee de zuiger naar beneden beweegt.

vpiston=ΔPf(3μLPCR3)(D)

Snelheid van zuiger gegeven afschuifspanning

De Snelheid van de zuiger gegeven schuifspanning wordt gedefinieerd als de gemiddelde Snelheid in de tank als gevolg van beweging van de zuiger.

vpiston=𝜏1.5DμCHCH

Snelheid van de lente gegeven doorbuiging

Veerkracht gegeven De doorbuigingsformule wordt gedefinieerd als een maat voor de stijfheid van een veer, wat de hoeveelheid kracht is die nodig is om één eenheid van vervorming of verplaatsing in een veer te produceren. Het is een cruciale parameter bij het ontwerp en de analyse van op veren gebaseerde systemen.

k=Pδ

Snelheidsfactor

De Snelheidsfactor wordt gedefinieerd als de waarde die wordt gebruikt voor het verhogen van de statische belastingswaarde voor het overwegen van het dynamische effect voor het ontwerp van rails. Het wordt over het algemeen de Indiase formule genoemd.

Fsf=Vt18.2k

Snelheid gegeven Snelheidsfactor

Snelheid gegeven Snelheidsfactor is de Snelheid van de trein die wordt aangeduid als de Snelheid waarmee het object of de trein een specifieke afstand aflegt. eenheid in km/u.

Vt=Fsf(18.2k)

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!