Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheid van Electron

De Snelheid van het elektron verwijst naar zijn Snelheid en bewegingsrichting en wordt bepaald door het principe van behoud van energie. Het zegt in wezen dat de verandering in kinetische energie van het elektron gelijk is aan de verandering in potentiële energie die het ervaart als gevolg van het elektrische veld.

Vv=2[Charge-e]V[Mass-e]

Snelheid van elektronen in krachtvelden

De Snelheid van elektronen in krachtvelden wordt gebruikt om de Snelheid van een geladen deeltje te berekenen in een veld waar zowel een elektrisch als een magnetisch veld aanwezig is.

Vef=EIH

Snelheid op afstand en retour in mijlen per uur, gegeven variabele tijd

De formule voor Snelheid bij het vervoer en terugbrengen in mijlen per uur, gegeven de variabele tijd, wordt gedefinieerd als de afgelegde afstand per tijdseenheid.

Smph=Hft+Rft88Tv

Snelheid bij transport en retour in kilometer per uur, gegeven variabele tijd

De Snelheid bij transport en retour in kilometer per uur, gegeven variabele tijd, wordt gedefinieerd als de Snelheid wanneer we vooraf informatie hebben over de retourafstand en de transportafstand.

Skmph=hm+Rmeter16.7Tv

Snelheid van zuiger of lichaam voor beweging van zuiger in Dash-Pot

De Snelheid van de zuiger of het lichaam voor de beweging van de zuiger in de dash-pot-formule is bekend, rekening houdend met het gewicht, de lengte en de diameter van de zuiger, de viscositeit van vloeistof of olie en de speling tussen de dash-pot en de zuiger.

V=4WbC33πLdp3μ

Snelheid bij sectie 1 van de Bernoulli-vergelijking

De Snelheid bij sectie 1 van de Bernoulli-vergelijking wordt gedefinieerd als Snelheid bij een bepaald deel van de buis.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Snelheidsverloop gegeven piëzometrisch verloop met schuifspanning

Het Snelheidsverloop gegeven piëzometrisch verloop met schuifspanning wordt gedefinieerd als verandering in Snelheid met betrekking tot radiale afstand.

VG=(γfμ)dh/dx0.5dradial

Snelheid tijdens hardlopen Gedeeltelijk volledig gegeven ontlading

De Snelheid bij gedeeltelijke vulling van het riool wordt gedefinieerd als de stroomSnelheid wanneer het riool niet volledig gevuld is, beïnvloed door de diepte en de helling.

Vs=qa

Snelheid tijdens het hardlopen Volledig gegeven ontlading

De Snelheid tijdens het draaien op volle capaciteit wordt gedefinieerd als de Snelheid waarmee vloeistof door een volledig gevulde pijp of kanaal stroomt, doorgaans bij maximale capaciteit.

V=QA

Snelheid tijdens hardlopen Gedeeltelijk volledig gegeven Proportionele ontlading

De Snelheid bij gedeeltelijke vulling bij proportionele afvoer wordt gedefinieerd als de stroomSnelheid wanneer het riool niet volledig is gevuld, beïnvloed door de diepte en de helling.

Vs=PqVAa

Snelheid tijdens het hardlopen Volledig gegeven Proportionele ontlading

De Snelheid bij volledige vulling bij proportionele afvoer wordt gedefinieerd als de Snelheid van de vloeistofstroom in een buis wanneer deze volledig gevuld is, beïnvloed door de helling en ruwheid van de buis.

V=VsaPqA

Snelheidsconstante gegeven deoxygenatieconstante

De Snelheidsconstante, gegeven de formule voor deoxygenatieconstante, wordt gedefinieerd als de Snelheid van oxidatie van organisch materiaal en hangt af van de aard van het daarin aanwezige organische materiaal en de temperatuur.

K=2.3KD

Snelheid van jet gegeven normale stuwkracht parallel aan richting van jet

De Snelheid van jet gegeven normale stuwkracht evenwijdig aan richting van jet is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van tijd.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Snelheid van jet gegeven normale stuwkracht normaal naar richting van jet

De Snelheid van jet gegeven normale stuwkracht normaal tot richting van jet is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Snelheid van schoep bij inlaat gegeven Snelheidsverhouding Francis Turbine

De Snelheid van de schoep bij een gegeven inlaatSnelheid. Ratio Francis-turbine wordt gedefinieerd als de Snelheid van de schoep bij de inlaat van de turbine.

u1=Ku2gHi

Snelheid van voertuig gegeven breekafstand

Snelheid van voertuig gegeven Breaking Distance formule wordt gedefinieerd als Snelheid waarmee het voertuig op het wegdek beweegt.

Vb=(BD(2[g]f))0.5

Snelheid van gemiddelde bloedstroom

De formule voor de Snelheid van de gemiddelde bloedstroom wordt gedefinieerd als het bloedvolume dat in een bepaald tijdsinterval door een bepaald vat stroomt.

Q=(vbloodAartery)

Snelheid gegeven Lekkage

Snelheid gegeven lekkage gedefinieerd in de context van vloeistofdynamica, in het bijzonder omgaan met lekkage, verwijst de term Snelheid naar de Snelheid waarmee de vloeistof door een lek ontsnapt.

v=QoA

Snelheidsdruk in kanalen

De formule voor Snelheid en druk in kanalen wordt gedefinieerd als de druk die wordt uitgeoefend door de lucht- of gasstroom in een kanaal. Dit is een belangrijke factor bij het bepalen van de prestaties van verwarmings-, ventilatie- en airconditioningsystemen, evenals andere industriële processen waarbij luchtstroom een rol speelt.

Pv=0.6Vm2

Snelheid van water bij de uitlaat van de trekbuis gegeven de efficiëntie van de trekbuis

De Snelheid van water bij de uitlaat van de trekbuis, gegeven de efficiëntieformule van de trekbuis, wordt gebruikt om de Snelheid van het water bij de uitlaat van de trekbuis te vinden, het uiteinde met een groter dwarsdoorsnede-oppervlak.

V2=(V12)(1-ηd)-(hf2[g])

Snelheid van water bij de inlaat van de trekbuis gegeven de efficiëntie van de trekbuis

De Snelheid van water bij de inlaat van de trekbuis, gegeven de efficiëntieformule van de trekbuis, wordt gebruikt om de Snelheid van het water bij de inlaat van de trekbuis te vinden, het uiteinde van de trekbuis met een kleiner dwarsdoorsnede-oppervlak.

V1=(V22)+(hf2[g])1-ηd

Snelheid van convectieve warmteoverdracht

De Snelheid van convectieve warmteoverdracht is de overdracht van warmte van de ene plaats naar de andere als gevolg van de beweging van vloeistof. Het omvat de gecombineerde processen van geleiding (warmtediffusie) en advectie (warmteoverdracht door bulkvloeistofstroom).

q=htransferAexpo(Tw-Ta)

Snelheid van langzaam voertuig met behulp van OSD

Snelheid van langzaam voertuig met behulp van OSD wordt gebruikt om de Snelheid te vinden van het voertuig dat moet worden ingehaald door een snel bewegend voertuig wanneer OSD wordt gegeven.

Vb=OSD-VT-2ltr+T+1.4

Snelheidsconstante voor eerste stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie

De formule voor de Snelheidsconstante voor eerste stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie wordt gedefinieerd als de evenredigheidsconstante voor eerste stap reactie in twee stappen eerste orde onomkeerbare reactie in serie voor mixed flow reactor bij maximale tussenliggende concentratie.

kI=1k2(τR,max2)

Snelheidsconstante voor tweede stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie

De Snelheidsconstante voor tweede stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie formule wordt gedefinieerd als de evenredigheidsconstante voor tweede stap reactie in twee stappen eerste orde onomkeerbare reactie in serie voor mixed flow reactor bij maximale tussenliggende concentratie.

k2=1kI(τR,max2)

Snelheid van warmtegeleiding van motorwand

De formule voor warmtegeleiding van de motorwand wordt gedefinieerd als de hoeveelheid warmte die over de motorwand wordt overgedragen naar het koelmiddel rond de wand.

Qcond=(K)AΔTΔX

Snelheid van turbine gegeven eenheidsSnelheid

De Speed of Turbine gegeven Unit Speed-formule wordt gedefinieerd als de rotatieSnelheid van de turbine.

N=NuH

Snelheid van de satelliet in cirkelvormige LEO als functie van de hoogte

De formule voor de Snelheid van een satelliet in een cirkelvormige LEO als functie van de hoogte wordt gedefinieerd als de Snelheid waarmee een satelliet in een cirkelvormige lage baan om de aarde draait, afhankelijk van de hoogte van de satelliet boven het aardoppervlak. Dit is een cruciale parameter bij het ontwerp en de werking van satellieten in ruimtemissies.

v=[GM.Earth][Earth-R]+z

Snelheid van de satelliet in zijn cirkelvormige GEO-straal

De Snelheid van de satelliet in de formule voor de cirkelvormige GEO-straal wordt gedefinieerd als de Snelheid waarmee een satelliet in een cirkelvormige geostationaire baan om de aarde draait, afhankelijk van de zwaartekrachtconstante en de straal van de baan.

v=[GM.Earth]Rgso

Snelheidsconstante van fase tussen bel en wolk

De formule voor de Snelheidsconstante van de fase tussen bel en wolk wordt gedefinieerd als berekende Snelheidsconstante, wanneer er belvorming optreedt in de gefluïdiseerde reactor.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Snelheidsconstante van fase tussen Cloud-Wake en Emulsion

De Snelheidsconstante van de fase tussen de formule Cloud-Wake en Emulsion wordt gedefinieerd als de Snelheidsconstante die wordt berekend wanneer er borreling optreedt in de interfase in de gefluïdiseerde reactor volgens het Kunii-Levenspiel-model.

Kce=6.77(εmfDf Rubrdb3)12

Snelheid voor vertraagde coherentie in fotodissociatie

De formule voor Snelheid voor vertraagde coherentie in fotodissociatie wordt gedefinieerd als de grootte van de verandering van zijn positie in de tijd of de grootte van de verandering van zijn positie per tijdseenheid tijdens vertraagde coherentie tijdens fotodissociatie van het KrF-molecuul.

vcov=2(Vcov_R0-Vcov_R)μcov

Snelheid in snel gefluïdiseerd bed

De formule voor Snelheid in snel gefluïdiseerd bed verwijst naar de opwaartse Snelheid van het fluïdisatiegas dat wordt gebruikt om vaste deeltjes in het bed te suspenderen en fluïdiseren. Snelle gefluïdiseerde bedden worden gekenmerkt door hoge gassnelheden, en deze snelheden zijn doorgaans aanzienlijk groter dan de minimale fluïdisatieSnelheid.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Snelheid bij pneumatisch transport

De formule voor Snelheid bij pneumatisch transport wordt gedefinieerd als de Snelheid, doorgaans uitgedrukt als de lucht- of gasSnelheid op het punt van injectie of introductie van de vaste deeltjes in het transportsysteem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Snelheidsvoortplanting in verliesloze lijn

De formule voor Snelheidsvoortplanting in verliesloze lijn is omgekeerd evenredig met de vierkantswortel van het product van serie-inductie en seriecapaciteit van een lijn.

Vp=1lc

Snelheid van de volger na tijd t voor cycloïdale beweging

De formule voor de Snelheid van de volger na tijd t voor cycloïde beweging wordt gedefinieerd als de maat voor de Snelheid van de volger in een nokkenas- en volgersysteem, dat een cycloïde beweging ondergaat, en beschrijft de beweging van de volger terwijl deze roteert en in een cirkelvormig pad beweegt.

v=ωSθo(1-cos(2πθrotationθo))

Snelheid achter normale schok volgens normale schokmomentumvergelijking

De Snelheid achter normale schok door middel van Normal Shock Momentum Equation berekent de Snelheid van een vloeistof stroomafwaarts van een normale schokgolf met behulp van de Normal Shock Momentum Equation. Deze formule omvat parameters zoals de statische druk vóór en achter de schok, de dichtheid vóór de schok en de Snelheid stroomopwaarts van de schok. Het biedt cruciale inzichten in de Snelheidsverandering als gevolg van het passeren van de schokgolf.

V2=P1-P2+ρ1V12ρ2

Snelheid vóór normale schok door normale schokmomentumvergelijking

De Snelheid vóór normale schok met behulp van Normal Shock Momentum Equation berekent de Snelheid van een vloeistof vóór een normale schokgolf met behulp van de Normal Shock Momentum Equation. Deze formule houdt rekening met parameters zoals de statische druk voor en achter de schok, de dichtheid achter de schok en de Snelheid stroomafwaarts van de schok. Het biedt cruciale informatie over de vloeistofSnelheid voordat de schokgolf wordt ervaren, wat helpt bij de analyse van het samendrukbare stromingsgedrag.

V1=P2-P1+ρ2V22ρ1

Snelheid van de zuiger tijdens extensie

De formule voor de Snelheid van de zuiger tijdens de extensie wordt gedefinieerd als de bewegingsSnelheid van een zuiger in een hydraulische actuator of motor. Dit is een kritische parameter bij het bepalen van de prestaties en efficiëntie van het systeem en wordt beïnvloed door de stroomSnelheid en het zuigeroppervlak.

vpiston=QextAp

Snelheid van de zuiger tijdens het terugtrekken

De formule voor de Snelheid van de zuiger tijdens het terugtrekken wordt gedefinieerd als de bewegingsSnelheid van een zuiger tijdens de terugtrekkingsfase in een hydraulisch systeem. Dit is van cruciaal belang voor het bepalen van de algehele prestaties en efficiëntie van hydraulische actuatoren en motoren.

vpiston=QretAp-Ar

Snelheid van trillingen veroorzaakt door explosies

De Snelheid van trillingen veroorzaakt door stralen wordt gedefinieerd als de Snelheid waarmee de verplaatsing tijdens het trillingswerk verandert.

V=(λvf)

Snelheid van deeltjes verstoord door trillingen

De formule voor de Snelheid van deeltjes verstoord door trillingen wordt gedefinieerd als de Snelheid van deeltjes die worden beïnvloed door trillingen, waarbij de Snelheid en richting van hun beweging als reactie op verstoring worden uitgedrukt.

v=(2πfA)

Snelheid van deeltje één op afstand van explosie

De Snelheid van deeltje één op afstand van een explosie wordt gedefinieerd als de Snelheid van een deeltje vanaf het ontploffingspunt op een specifieke afstand.

v1=v2(D2D1)1.5

Snelheid van deeltje twee op afstand van explosie

De Snelheid van deeltje twee op afstand van explosie wordt gedefinieerd als de Snelheid van verandering van verplaatsing van deeltje.

v2=v1(D1D2)1.5

Snelheid bij uitlaat voor drukverlies bij uitgang van pijp

De formule van de Snelheid bij de uitlaat voor drukverlies bij het verlaten van de pijp is bekend, rekening houdend met de vierkantswortel van het hoofdverlies bij de uitgang van de pijp en de zwaartekrachtversnelling.

v=ho2[g]

Snelheid van vloeistof bij vena-contracta

De vloeistofSnelheid bij de vena-contracta-formule is bekend, rekening houdend met het oppervlak van de buis en het maximale obstructiegebied in de buis, de samentrekkingscoëfficiënt en de Snelheid van de vloeistof in de buis.

Vc=AVfCc(A-A')

Snelheidsgradiënt gegeven schuifspanning

De Velocity Gradient gegeven Shear Stress-formule wordt gedefinieerd als het verschil in Snelheid tussen aangrenzende lagen van de vloeistof. Het is de verhouding tussen verandering in Snelheid en verandering in afstand tussen de lagen.

dvdy=τμ

Snelheidsgradiënt

De Snelheidsgradiëntformule wordt gedefinieerd als een verhouding tussen verandering in Snelheid tussen aangrenzende lagen en verandering in afstand tussen opeenvolgende punten tussen aangrenzende lagen.

dvdy=dvdy

Snelheid van vloeistof gegeven schuifspanning

De formule voor de Velocity of Fluid gegeven Shear Stress wordt gedefinieerd als een functie van schuifspanning, dynamische viscositeit en afstand tussen de aangrenzende vloeistoflagen.

V=Yτμ

Snelheidspotentieel voor 2D-doubletstroom

De formule voor Snelheidspotentieel voor 2D-doubletstroom vertegenwoordigt het Snelheidspotentieel voor een 2D-doubletstroom. Het geeft aan dat deze omgekeerd evenredig is met de afstand tot het doublet en varieert met de hoek.

ϕ=κ2πrcos(θ)

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!