Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheid van progressieve golf

De Velocity of Progressive Wave-formule wordt gedefinieerd als een maatstaf voor de Snelheid waarmee een golf zich door een medium voortplant, beschrijft de Snelheid van verstoringsoverdracht in een fysiek systeem, en is een fundamenteel concept voor het begrijpen van golfdynamica en hun toepassingen in verschillende gebieden van de natuurkunde. .

Vw=λTW

Snelheid van progressieve golf met behulp van frequentie

Snelheid van progressieve golven met behulp van de frequentieformule wordt gedefinieerd als een maatstaf voor de Snelheid waarmee een golf zich door een medium voortplant, wat essentieel is voor het begrijpen van verschillende fysieke verschijnselen, zoals geluidsgolven, lichtgolven en seismische golven, en cruciaal is in velden zoals natuurkunde, techniek en geologie.

Vw=λfw

Snelheid van progressieve golf gegeven hoekfrequentie

Snelheid van progressieve golf gegeven hoekfrequentieformule wordt gedefinieerd als een maatstaf voor de Snelheid van een golf die in een specifieke richting beweegt, beïnvloed door de hoekfrequentie, en is essentieel voor het begrijpen van het gedrag van golven in verschillende fysieke systemen, inclusief geluid en licht golven.

Vw=λωf2π

Snelheid van klein element voor transversale trillingen

De formule voor de Snelheid van een klein element bij transversale trillingen wordt gedefinieerd als een maat voor de Snelheid van een klein element bij een transversale trilling, die wordt beïnvloed door de traagheid van de beperking, en wordt gebruikt om de beweging van deeltjes bij longitudinale en transversale trillingen te analyseren.

vs=(3lx2-x3)Vtraverse2l3

Snelheidsverhouding gegeven afstand die is verplaatst als gevolg van inspanning en afstand die is verplaatst als gevolg van belasting

Velocity Ratio gegeven Distance Moved due to Effort en Distance Moved due to Load is de verhouding van de afstand afgelegd door de inspanning tot de afstand afgelegd door de belasting. Het geeft aan hoe de machine de afstand afgelegd door de inspanning omzet in de afstand afgelegd door de belasting.

Vi=DeDl

Snelheidscoëfficiënt gegeven hoofdverlies

De formule van de Snelheidscoëfficiënt gegeven hoofdverlies is bekend door de vergelijking van Bernoulli toe te passen bij de uitlaat van het mondstuk en op de waterstraal.

Cv=1-(hfH)

Snelheid met behulp van waterstroomvergelijking

De Snelheid met behulp van waterstroomvergelijking wordt gedefinieerd als de stroomSnelheid wanneer het oppervlak van de dwarsdoorsnede van de buis en de waterstroom worden gegeven.

Vf=QwAcs

Snelheidsdruk zoals gegeven door ASCE 7

De Snelheidsdruk zoals gegeven door ASCE 7 wordt gedefinieerd als de Snelheidsdruk volgens de ASCE 7 Method II-normen, rekening houdend met winddruk, externe en interne drukcoëfficiënten.

q=p+qiGCptGCep

Snelheidsdruk op een bepaald punt zoals gegeven door ASCE 7

De Snelheidsdruk op een bepaald punt, zoals gegeven door ASCE 7, wordt gedefinieerd als de Snelheidsdruk op een bepaald punt voor het bepalen van de interne druk volgens ASCE 7 Methode II.

qi=(qGCep)-pGCpt

Snelheid gegeven draaistraal voor hoge belastingsfactor

De Snelheid die wordt gegeven bij een bochtradius voor omstandigheden met een hoge belastingsfactor is de Snelheid die een vliegtuig nodig heeft om een specifieke draairadius te behouden terwijl er een aanzienlijke belastingsfactor wordt ervaren. Deze formule berekent de Snelheid op basis van de draairadius, de belastingsfactor en de zwaartekrachtversnelling. Het begrijpen en toepassen van deze formule is cruciaal voor piloten en ingenieurs bij het optimaliseren van de manoeuvreerbaarheid van vliegtuigen en het garanderen van de veiligheid tijdens manoeuvres met hoge belasting.

v=Rn[g]

Snelheid bij sectie 1 voor gestage stroom

De formule Velocity at Section 1 for Steady Flow wordt gedefinieerd als de stroomSnelheid op een bepaald punt in de stroom.

u01=QAcsρ1

Snelheid bij sectie 2 gegeven Flow bij sectie 1 voor gestage stroom

De Snelheid in sectie 2 gegeven debiet in sectie 1 voor de constante stroomformule wordt gedefinieerd als de stroomSnelheid op een bepaald punt in de stroom.

u02=QAcsρ2

Snelheid bij sectie voor ontlading door sectie voor stabiele onsamendrukbare vloeistof

De Snelheid bij sectie voor afvoer door sectie voor stabiele onsamendrukbare vloeistof wordt gedefinieerd als stroomSnelheid in het dwarsdoorsnedegebied.

uFluid=QAcs

Snelheid langs de Yaw-as voor een kleine aanvalshoek

Snelheid langs de gieras voor kleine aanvalshoek is een maatstaf voor de Snelheid waarmee de positie van een object langs de gieras verandert, ten opzichte van de beweging als gevolg van een kleine aanvalshoek. Deze Snelheid wordt berekend door de Snelheid langs de rolas te vermenigvuldigen met de aanvalshoek in radialen, wat een cruciale parameter vormt in de aerodynamica en vluchtdynamiek.

w=uα

Snelheid langs de rolas voor een kleine aanvalshoek

Snelheid langs rolas voor kleine aanvalshoek is een maatstaf voor de rotatieSnelheid van een object rond zijn rolas wanneer de aanvalshoek relatief klein is, en wordt berekend door de Snelheid langs gierbeweging te delen door de aanvalshoek in radialen.

u=wα

Snelheid langs de steekas voor een kleine zijsliphoek

Snelheid langs de steekas voor kleine zijsliphoek is een maatstaf voor de Snelheid van een vliegtuig of een object dat onder een kleine sliphoek beweegt, wat essentieel is voor het begrijpen en voorspellen van het traject en de stabiliteit ervan.

v=βu

Snelheid langs de rolas voor een kleine zijsliphoek

De Snelheid langs de rolas voor kleine zijsliphoek is een maatstaf voor de Snelheid van het vliegtuig in de richting van de rolas wanneer de zijsliphoek klein is. Dit geeft inzicht in de stabiliteit en het reactievermogen van het vliegtuig tijdens de vlucht.

u=vβ

Snelheid van de bulkporiën

De Bulk Pore Velocity-formule wordt gedefinieerd als de werkelijke verplaatsingsSnelheid van water in het poreuze medium. De hydraulische geleidbaarheidsfuncties zijn geïntegreerd vanuit de porieSnelheidsverdeling.

Va=Vη

Snelheid voor kracht uitgeoefend door stationaire plaat op jet

Snelheid voor kracht uitgeoefend door stationaire plaat op straal is de mate van verandering van zijn positie ten opzichte van een referentiekader en is een functie van tijd.

vjet=FSt,⊥p[g]γfAJet

Snelheid gegeven Massa van vloeistof

De gegeven Snelheid van de vloeistof is de Snelheid van verandering van zijn positie ten opzichte van het referentiekader en is een functie van de tijd.

vjet=mpS[g]γfAJet

Snelheid voor kracht uitgeoefend op plaat in stroomrichting van jet

Snelheid voor kracht uitgeoefend op plaat in stroomrichting van jet is de mate van verandering van zijn positie ten opzichte van een referentiekader en is een functie van tijd.

vjet=Fjet[g]γfAJet(1+cos(θt))

Snelheid voor kracht uitgeoefend door straal op schoep in x-richting

De Snelheid voor kracht uitgeoefend door straal op schoep in x-richting is de Snelheid van verandering van zijn positie ten opzichte van een referentiekader, en is een functie van de tijd.

vjet=FxgγfAJet(cos(θ)+cos(∠D))

Snelheid gegeven Kracht uitgeoefend door Jet op Vane in Y-richting

De Snelheid gegeven kracht uitgeoefend door Jet on Vane in Y-richting wordt gedefinieerd als de Snelheid waarmee zijn positie verandert ten opzichte van een referentiekader, en is een functie van de tijd.

vjet=FygγfAJet((sin(θ))-sin(∠D))

Snelheid op diepte1 gegeven absolute Snelheid van stijging die naar rechts beweegt

De Snelheid op diepte1 gegeven de formule voor absolute Snelheid van golfbeweging naar rechts wordt gedefinieerd als de resulterende Snelheid op een specifieke diepte als gevolg van gecombineerde golfbewegingen en horizontale beweging.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Snelheid op diepte2 gegeven absolute Snelheid van pieken die naar rechts bewegen

De Snelheid op diepte 2, gegeven de formule voor absolute Snelheid van golven die naar rechts bewegen, wordt gedefinieerd als de resulterende Snelheid op diepte 2, rekening houdend met de golfbeweging.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Snelheid op diepte1 wanneer absolute Snelheid van stijging wanneer de stroom volledig is gestopt

De formule Snelheid op diepte1 wanneer de absolute Snelheid van de golf wanneer de stroming volledig is gestopt, wordt gedefinieerd als de initiële waterSnelheid tijdens abrupte stopzetting.

VNegativesurges=vabs(D2-h 1)h 1

Snelheid van golf in pieken

De formule Celerity of Wave in Surges wordt gedefinieerd als de toevoeging aan de normale waterSnelheid van kanalen in open kanaalstroming.

Cw=[g]D2(D2+h 1)2h 1

Snelheid van golf gegeven Snelheid op diepte1

De formule voor de Snelheid van de golf gegeven Snelheid op diepte1 wordt gedefinieerd als de hoogte van de stromingsverandering die in het kanaal optreedt.

Cw=VNegativesurges([g](D2+h 1)2h 1Hch)

Snelheid op diepte1 wanneer de hoogte van de piek voor de hoogte van de golf een verwaarloosbare diepte van de stroom is

De Snelheid op diepte1 wanneer de hoogte van de golf voor de hoogte van de golf te verwaarlozen is De formule voor de diepte van de stroom wordt gedefinieerd als de Snelheid van de stroomstoot op het punt.

VNegativesurges=(Hch[g]Cw)+V2

Snelheid van golf gegeven golfhoogte voor golfhoogte is verwaarloosbare diepte van stroom

De Snelheid van de golf gegeven golfhoogte voor golfhoogte is verwaarloosbaar Diepte van de stroomformule wordt gedefinieerd als plotselinge veranderingen in de stroom.

Cw=Hch[g]VNegativesurges

Snelheid van golf gegeven absolute Snelheid van pieken

De golfSnelheid bij een absolute stroomstootSnelheid wordt gedefinieerd als plotselinge veranderingen in de stroming door stroomstoten.

Cw=vabs-vm

Snelheid van verandering van volume gegeven opslagcoëfficiënt

De formule voor volumeverandering wordt gegeven door de opslagcoëfficiënt. Deze formule is gedefinieerd als een maat voor de verandering in volume water in de opslag per eenheid verandering in opvoerhoogte. Dit is essentieel bij onstabiele stromingsomstandigheden om het dynamische gedrag van watervoerende lagen te begrijpen en de reactie op veranderingen in pompsnelheden of aanvulling te voorspellen.

δVδt=(δhδt)SAaq

Snelheid van verandering van hoogte gegeven Snelheid van verandering van volume

De formule voor de Snelheid van verandering van hoogte wordt gedefinieerd als een wiskundige weergave die de verandering in hoogte van een vloeistof in een onstabiele stromingscontext bepaalt. Dit biedt waardevolle inzichten in het dynamische gedrag van vloeistoffen in verschillende technische en wetenschappelijke toepassingen.

δhδt=δVδt(Aq)S

Snelheidsconstante gegeven initiële Snelheid en enzymsubstraatcomplexconcentratie

De formule voor Snelheidsconstante gegeven initiële Snelheid en enzymsubstraatcomplexconcentratie wordt gedefinieerd als de verhouding van de initiële Snelheid van het systeem tot de concentratie van enzym-substraatcomplex.

k2=V0ES

Snelheidsconstante gegeven maximale Snelheid en initiële enzymconcentratie

De formule voor de Snelheidsconstante gegeven maximale Snelheid en initiële enzymconcentratie wordt gedefinieerd als de verhouding van de maximale Snelheid van het systeem tot de initiële enzymconcentratie.

k2=Vmax[E0]

Snelheid gegeven Lengte van leiding na gebruik van leidinggebied in afvoer

De opgegeven Snelheid De lengte van de leiding na gebruik van de oppervlakte van de leiding in de afvoer wordt gedefinieerd als de stroomSnelheid van het water.

Vmax=C1HfLpipe

Snelheidsconstante van onomkeerbare reactie van de tweede orde

De formule voor de Snelheidsconstante van de onomkeerbare reactie van de tweede orde wordt gedefinieerd als de evenredigheidsconstante in de vergelijking die de relatie uitdrukt tussen de Snelheid van een chemische reactie en de concentraties van de reagerende stoffen.

k2=rCACB

Snelheid in bochten gegeven horizontale laterale versnelling

De formule voor de gegeven horizontale dwarsversnelling in bochten wordt gebruikt om de Snelheid van de auto tijdens het nemen van bochten te bepalen.

V=AαR

Snelheid in bochten gegeven effectief gewicht van auto als gevolg van bankieren

De formule voor de bochtSnelheid gegeven het effectieve gewicht van de auto vanwege de hellingshoek wordt gebruikt om de Snelheid van de auto tijdens het nemen van bochten te bepalen op basis van het gewicht van het voertuig dat tijdens het nemen van bochten wordt ervaren.

V=(Wem-cos(Φ))R[g]sin(Φ)

Snelheidsconstante van reactie door Erying-vergelijking

Snelheidsconstante van reactie door Erying-vergelijking wordt gedefinieerd als de Snelheid van een reactie die gelijk is aan het aantal geactiveerde complexen dat ontbindt om producten te vormen. Het is dus de concentratie van het hoogenergetische complex vermenigvuldigd met de frequentie waarmee het de barrière overstijgt.

k=[BoltZ]Texp(SActivation[Molar-g])exp(-HActivation[Molar-g]T)[hP]

Snelheidsconstante voor tweede-ordereactie voor plugstroom

De formule Snelheidsconstante voor tweede-ordereactie voor plugstroom wordt gedefinieerd als de evenredigheidsconstante in de vergelijking die de relatie uitdrukt tussen de Snelheid van een chemische reactie en de concentraties van de reagerende stoffen voor een aanzienlijke fractionele volumeverandering.

kPlugFlow''=(1𝛕Co)(2ε(1+ε)ln(1-XA)+ε2XA+((ε+1)2XA1-XA))

Snelheidsconstante voor tweede-ordereactie voor gemengde stroom

De formule Snelheidsconstante voor tweede-ordereactie voor gemengde stroom wordt gedefinieerd als de evenredigheidsconstante in de vergelijking die de relatie uitdrukt tussen de Snelheid van een chemische reactie en de concentraties van de reagerende stoffen voor gemengde stroom.

kMixedFlow''=(1𝛕MFRCo-MFR)(XMFR(1+(εXMFR))2(1-XMFR)2)

Snelheidsconstante voor eerste orde reactie met behulp van Snelheidsconstante voor nulde orde reactie

De Snelheidsconstante voor reactie van de eerste orde met behulp van de formule Snelheidsconstante voor nulde-ordereactie wordt gedefinieerd als de evenredigheidsconstante van een reactie die van de eerste orde is, maar wordt gevolgd door een nulde-orde-reactie met behulp van de Snelheidsconstante voor nulde-orde-reactie.

kI=(1Δt)ln(CA0CA0-(k0Δt)-CR)

Snelheidsconstante voor nulde-ordereactie met behulp van Snelheidsconstante voor eerste-ordereactie

De Snelheidsconstante voor nulde orde reactie met behulp van de formule voor Snelheidsconstante voor eerste orde reactie wordt gedefinieerd als de evenredigheidsconstante voor nulde orde reactie die volgt op eerste orde reactie met behulp van Snelheidsconstante voor eerste orde reactie.

k0,k1=(CA0Δt)(1-exp((-kI)Δt)-(CRCA0))

Snelheid van fosforescentie

De formule van de Snelheid van fosforescentie wordt gedefinieerd als de emissieSnelheid van licht van triplet-geëxciteerde toestand naar singlet grondtoestand.

Rateph=Kp[MT]

Snelheid van inzittende ten opzichte van voertuig na botsing

De formule voor de Snelheid van de inzittende ten opzichte van het voertuig na een botsing wordt gedefinieerd als een maatstaf voor de Snelheid van een inzittende ten opzichte van het voertuig na een botsing. Dit is van cruciaal belang om de ernst van de impact en de daaruit voortvloeiende verwondingen te begrijpen.

Vr=Voδoccd

Snelheidsconstante van nul-orde-reactie in nul-orde-reactie gevolgd door eerste-orde-reactie

De Snelheidsconstante van de nulde-orde-reactie in de nul-orde-reactie gevolgd door de eerste-orde-reactie-formule wordt gedefinieerd als de relatie tussen de reactieSnelheid en reagerende stoffen.

k0=CA0-CAΔt

Snelheidsvoortplanting in verliesloze lijn

De formule voor Snelheidsvoortplanting in verliesloze lijn is omgekeerd evenredig met de vierkantswortel van het product van serie-inductie en seriecapaciteit van een lijn.

Vp=1lc

Snelheid van de volger voor de raaknok van de rolvolger als er contact is met rechte flanken

Snelheid van volger voor rolvolger-raaknok als contact is met rechte flanken De formule wordt gedefinieerd als een maat voor de Snelheid van de volger in een nok-volgersysteem waarbij contact is met rechte flanken. Dit geeft inzicht in de kinematica van het systeem en maakt het mogelijk om efficiënte mechanische systemen te ontwerpen.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Snelheidscoëfficiënt voor Pelton Wheel

Snelheidscoëfficiënt voor Pelton Wheel is de verhouding tussen de werkelijke Snelheid van de waterstraal die het mondstuk verlaat en de theoretische Snelheid. Het houdt rekening met de verliezen als gevolg van wrijving en andere inefficiënties in het mondstuk en wordt gebruikt om de efficiëntie van de straalformatie te bepalen. Deze coëfficiënt is doorgaans kleiner dan 1.

Cv=V12[g]H

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

Copied!