Zoek Formules

Voer minimaal drie tekens in om aan de slag te gaan met het zoeken naar formules in .

Selecteer Filteren

Verfijn uw zoekresultaten met behulp van deze filters.

50 Overeenkomende formules gevonden!

Snelheid van Electron

De Snelheid van het elektron verwijst naar zijn Snelheid en bewegingsrichting en wordt bepaald door het principe van behoud van energie. Het zegt in wezen dat de verandering in kinetische energie van het elektron gelijk is aan de verandering in potentiële energie die het ervaart als gevolg van het elektrische veld.

Vv=2[Charge-e]V[Mass-e]

Snelheid van elektronen in krachtvelden

De Snelheid van elektronen in krachtvelden wordt gebruikt om de Snelheid van een geladen deeltje te berekenen in een veld waar zowel een elektrisch als een magnetisch veld aanwezig is.

Vef=EIH

Snelheid van vloeistofdeeltje

De Snelheid van vloeistofdeeltjes in de terminologie van vloeistofdynamica wordt gebruikt om de beweging van een continuüm wiskundig te beschrijven.

vf=dta

Snelheid van vloeistof gegeven dynamische druk

Snelheid van vloeistof gegeven Dynamische drukformule wordt gedefinieerd als een relatie die de Snelheid van vloeistofstroom uitdrukt op basis van de dynamische druk en de dichtheid van de vloeistof. Het is essentieel voor het begrijpen van vloeistofdynamica en het analyseren van het gedrag van vloeistoffen in verschillende mechanische systemen.

uFluid=Pdynamic2LD

Snelheid bij versnelde vlucht

De Snelheid bij versnelde vlucht verwijst naar de Snelheid van het vliegtuig terwijl het veranderingen in Snelheid of richting ondergaat om specifieke vluchtdoelen te bereiken. Deze Snelheid wordt doorgaans gemeten als de luchtSnelheid van het vliegtuig, wat de Snelheid is van het vliegtuig ten opzichte van de omringende lucht.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Snelheidsvergelijking van hydraulica

De Snelheidsvergelijking van de hydrauliekformule wordt gedefinieerd als het product van het dwarsdoorsnedeoppervlak en de grondwaterSnelheid.

q=Av

Snelheidsfactor voor commercieel gesneden tandwielen gemaakt met vormsnijders wanneer v minder dan 10

Snelheidsfactor voor commercieel gesneden tandwielen gemaakt met vormfrezen wanneer v kleiner dan 10 m/s de verhouding is van de statische belasting bij falen tot de dynamische belasting bij falen. Deze Snelheidsfactor Kv wordt gebruikt om de Lewis-vergelijking te wijzigen: Dus hoe hoger de spoedlijnSnelheid, hoe groter de buigspanning op de tandwieltanden.

Cv=33+v

Snelheidsfactor voor nauwkeurig gehobbelde en gegenereerde versnellingen wanneer v minder dan 20

Snelheidsfactor voor nauwkeurig gegolfde en gegenereerde tandwielen wanneer v minder dan 20 m/s de verhouding is van de statische belasting bij uitval tot de dynamische belasting bij uitval. Deze Snelheidsfactor Kv wordt gebruikt om de Lewis-vergelijking te wijzigen: Dus hoe hoger de spoedlijnSnelheid, hoe groter de buigspanning op de tandwieltanden.

Cv=66+v

Snelheidsfactor voor precisietandwielen met scheer- en slijpbewerkingen wanneer v groter dan 20

Snelheidsfactor voor precisietandwielen met scheer- en slijpbewerkingen wanneer v groter dan 20 m/s de verhouding is tussen de statische belasting bij uitval en de dynamische belasting bij uitval. Deze Snelheidsfactor Kv wordt gebruikt om de Lewis-vergelijking te wijzigen: Dus hoe hoger de spoedlijnSnelheid, hoe groter de buigspanning op de tandwieltanden.

Cv=5.65.6+v

Snelheidsverhouding van hydraulische koppeling:

De Snelheidsverhouding van de formule voor hydraulische koppelingen wordt gedefinieerd als een dimensieloze parameter die de prestaties van een hydraulische koppeling kenmerkt, door de verhouding tussen de turbineSnelheid en de pompSnelheid weer te geven. Het is een kritische factor bij het evalueren van de efficiëntie en effectiviteit van hydraulische systemen.

SR=ωtωp

Snelheid van zuiger gegeven stroomSnelheid in olietank

De Snelheid van de zuiger gegeven stroomSnelheid in olietank wordt gedefinieerd als de Snelheid waarmee de zuiger naar beneden gaat ten opzichte van de verticale afstand.

vpiston=((0.5dp|drRR-CHRμ)-uOiltank)(CHR)

Snelheid van zuigers voor drukval over lengte van zuiger

De Snelheid van de zuigers voor de drukval over de lengte van de zuiger wordt gedefinieerd als de Snelheid waarmee de zuiger naar beneden beweegt.

vpiston=ΔPf(6μLPCR3)(0.5D+CR)

Snelheid van zuiger voor verticale opwaartse kracht op zuiger

De Snelheid van de zuiger voor verticale opwaartse kracht op de zuiger wordt gedefinieerd als de gemiddelde Snelheid waarmee olie of zuiger in de tank beweegt.

vpiston=FvLPπμ(0.75((DCR)3)+1.5((DCR)2))

Snelheid op diepte1 gegeven absolute Snelheid van stijging die naar rechts beweegt

De Snelheid op diepte1 gegeven de formule voor absolute Snelheid van golfbeweging naar rechts wordt gedefinieerd als de resulterende Snelheid op een specifieke diepte als gevolg van gecombineerde golfbewegingen en horizontale beweging.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Snelheid op diepte2 gegeven absolute Snelheid van pieken die naar rechts bewegen

De Snelheid op diepte 2, gegeven de formule voor absolute Snelheid van golven die naar rechts bewegen, wordt gedefinieerd als de resulterende Snelheid op diepte 2, rekening houdend met de golfbeweging.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Snelheid op diepte1 wanneer absolute Snelheid van stijging wanneer de stroom volledig is gestopt

De formule Snelheid op diepte1 wanneer de absolute Snelheid van de golf wanneer de stroming volledig is gestopt, wordt gedefinieerd als de initiële waterSnelheid tijdens abrupte stopzetting.

VNegativesurges=vabs(D2-h 1)h 1

Snelheid van golf in pieken

De formule Celerity of Wave in Surges wordt gedefinieerd als de toevoeging aan de normale waterSnelheid van kanalen in open kanaalstroming.

Cw=[g]D2(D2+h 1)2h 1

Snelheid van golf gegeven Snelheid op diepte1

De formule voor de Snelheid van de golf gegeven Snelheid op diepte1 wordt gedefinieerd als de hoogte van de stromingsverandering die in het kanaal optreedt.

Cw=VNegativesurges([g](D2+h 1)2h 1Hch)

Snelheid op diepte1 wanneer de hoogte van de piek voor de hoogte van de golf een verwaarloosbare diepte van de stroom is

De Snelheid op diepte1 wanneer de hoogte van de golf voor de hoogte van de golf te verwaarlozen is De formule voor de diepte van de stroom wordt gedefinieerd als de Snelheid van de stroomstoot op het punt.

VNegativesurges=(Hch[g]Cw)+V2

Snelheid van golf gegeven golfhoogte voor golfhoogte is verwaarloosbare diepte van stroom

De Snelheid van de golf gegeven golfhoogte voor golfhoogte is verwaarloosbaar Diepte van de stroomformule wordt gedefinieerd als plotselinge veranderingen in de stroom.

Cw=Hch[g]VNegativesurges

Snelheid van golf gegeven absolute Snelheid van pieken

De golfSnelheid bij een absolute stroomstootSnelheid wordt gedefinieerd als plotselinge veranderingen in de stroming door stroomstoten.

Cw=vabs-vm

Snelheid terugstroming

De Return Flow Velocity-formule verwijst naar de Snelheid waarmee water terug beweegt naar de zee of een centraal punt nadat het is verplaatst door een golf, getij of een andere kracht tussen de scheepsromp en de bodem en zijkanten van het kanaal. Deze retourstroomSnelheid kan worden berekend voor een rechthoekige kanaal- en vatdoorsnede.

Vr=Vs((WDW(D-Δd)-Am)-1)

Snelheid op gewenste hoogte

De formule Snelheid op gewenste hoogte wordt gedefinieerd als de Snelheid van water op een gewenste hoogte binnen een stromingsprofiel. Het is essentieel om het type stroming en de relevante omstandigheden te begrijpen.

Vz=V10(z10)0.11

Snelheidscoëfficiënt gegeven spuitmondefficiëntie

Snelheidscoëfficiënt gegeven spuitmondefficiëntieformule wordt gedefinieerd als de verhouding van de werkelijke Snelheid van het gas dat uit een spuitmond komt, tot de Snelheid berekend onder ideale omstandigheden.

Cv=ηnozlze

Snelheid van het geluid stroomopwaarts van de geluidsgolf

De Snelheid van het geluid stroomopwaarts van de geluidsgolf kan worden bepaald door rekening te houden met de eigenschappen van het medium en de stromingsomstandigheden voorafgaand aan de geluidsgolf. In een isentropische stroming is de geluidsSnelheid gerelateerd aan het Mach-getal en de stroomSnelheid stroomopwaarts van de geluidsgolf.

a1=(γ-1)(u22-u122+a22γ-1)

Snelheid van het geluid stroomafwaarts van de geluidsgolf

De formule Snelheid van geluid stroomafwaarts van geluidsgolf berekent de stroomSnelheid stroomafwaarts van de geluidsgolf door gebruik te maken van de relatie tussen het Mach-getal en de geluidsSnelheid, ervan uitgaande dat de stroom isentropisch is. Het geeft aan hoe de stroomSnelheid achter de geluidsgolf zich verhoudt tot de geluidsSnelheid in het medium.

a2=(γ-1)(u12-u222+a12γ-1)

Snelheidsconstante voor nulordereactie met behulp van ruimtetijd voor plugstroom

De Snelheidsconstante voor nulde-ordereactie met behulp van de formule Space Time for Plug Flow wordt gedefinieerd als de reactieSnelheid voor een nulde-ordereactie waarbij de fractionele volumeverandering nul is.

kBatch=XA BatchCo Batch𝛕Batch

Snelheid van langzaam voertuig met behulp van OSD

Snelheid van langzaam voertuig met behulp van OSD wordt gebruikt om de Snelheid te vinden van het voertuig dat moet worden ingehaald door een snel bewegend voertuig wanneer OSD wordt gegeven.

Vb=OSD-VT-2ltr+T+1.4

Snelheidsconstante voor eerste stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie

De formule voor de Snelheidsconstante voor eerste stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie wordt gedefinieerd als de evenredigheidsconstante voor eerste stap reactie in twee stappen eerste orde onomkeerbare reactie in serie voor mixed flow reactor bij maximale tussenliggende concentratie.

kI=1k2(τR,max2)

Snelheidsconstante voor tweede stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie

De Snelheidsconstante voor tweede stap eerste orde reactie voor MFR bij maximale tussenliggende concentratie formule wordt gedefinieerd als de evenredigheidsconstante voor tweede stap reactie in twee stappen eerste orde onomkeerbare reactie in serie voor mixed flow reactor bij maximale tussenliggende concentratie.

k2=1kI(τR,max2)

Snelheid van warmtegeleiding van motorwand

De formule voor warmtegeleiding van de motorwand wordt gedefinieerd als de hoeveelheid warmte die over de motorwand wordt overgedragen naar het koelmiddel rond de wand.

Qcond=(K)AΔTΔX

Snelheid van emmer gegeven hoekSnelheid en straal

De formule voor hoekSnelheid en straal van de bakSnelheid wordt gedefinieerd als de tangentiële Snelheid van de bak die op het wiel is bevestigd.

Vb=ωDb2

Snelheid van bak gegeven diameter en toerental

De Snelheid van de emmer gegeven diameter en RPM-formule wordt gedefinieerd als de tangentiële Snelheid van de emmer die op het wiel is bevestigd.

Vb=πDbN60

Snelheid van straal uit mondstuk

De formule StraalSnelheid uit mondstuk wordt gedefinieerd als de Snelheid van de straal uit het mondstuk.

VJ=Cv2[g]H

Snelheidsconstante van nul-orde-reactie in nul-orde-reactie gevolgd door eerste-orde-reactie

De Snelheidsconstante van de nulde-orde-reactie in de nul-orde-reactie gevolgd door de eerste-orde-reactie-formule wordt gedefinieerd als de relatie tussen de reactieSnelheid en reagerende stoffen.

k0=CA0-CAΔt

Snelheid in kromlijnige beweging gegeven hoekSnelheid

Snelheid bij kromlijnige beweging gegeven De formule voor hoekSnelheid wordt gedefinieerd als een maat voor de Snelheid waarmee de positie van een object langs een gebogen pad verandert. Het beschrijft de beweging van een object dat in een cirkelvormig pad rond een vaste as beweegt, waarbij de grootte afhankelijk is van de hoekSnelheid en de straal van het cirkelvormige pad.

vcm=ωr

Snelheidsvoortplanting in verliesloze lijn

De formule voor Snelheidsvoortplanting in verliesloze lijn is omgekeerd evenredig met de vierkantswortel van het product van serie-inductie en seriecapaciteit van een lijn.

Vp=1lc

Snelheid van alfadeeltje met behulp van afstand van dichtstbijzijnde nadering

De Snelheid van alfadeeltjes met behulp van de afstand van de dichtstbijzijnde benadering is de Snelheid waarmee een alfadeeltje in een atoomkern reist.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Snelheid van volger voor cirkelboogcamera als contact zich op cirkelflank bevindt

De formule voor de Snelheid van de volger voor een cirkelvormige boognok als het contactpunt zich op de cirkelvormige flank bevindt, wordt gedefinieerd als de maat voor de Snelheid van de volger in een cirkelvormig nokkenasmechanisme wanneer het contactpunt zich op de cirkelvormige flank bevindt. Dit is een cruciale parameter bij het ontwerpen en optimaliseren van nokvolgersystemen.

v=ω(R-r1)sin(θturned)

Snelheid voor gegeven draaiSnelheid

De Snelheid voor een bepaalde draaiSnelheid is een maatstaf voor de Snelheid van een vliegtuig tijdens een bocht, berekend op basis van de belastingsfactor, de zwaartekrachtversnelling en de draaiSnelheid.

V=[g]n2-1ω

Snelheid van het lichaam in eenvoudige harmonische beweging

De formule voor de Snelheid van een lichaam in eenvoudige harmonische beweging wordt gedefinieerd als de maximumSnelheid van een object terwijl het trilt rond zijn evenwichtspositie. Dit geeft een maat voor de kinetische energie van het object tijdens zijn trillende beweging.

V=A'ωcos(ωtsec)

Snelheid voor gegeven optrekmanoeuvreradius

De Snelheid voor een bepaalde optrekmanoeuvreradius van een vliegtuig is afhankelijk van de manoeuvreradius en de belastingsfactor van het vliegtuig. Deze formule geeft een vereenvoudigde benadering van de Snelheid die nodig is om de gewenste daalSnelheid te behouden tijdens de optrekmanoeuvre.

Vpull-up=R[g](n-1)

Snelheid voor gegeven pull-up manoeuvreerSnelheid

De Snelheid voor een bepaalde optrekmanoeuvreSnelheid is de Snelheid die een vliegtuig nodig heeft om een bepaalde stijgSnelheid aan te houden tijdens een optrekmanoeuvre. Deze formule berekent de Snelheid op basis van de zwaartekrachtversnelling, de pull-up-belastingsfactor en de draaiSnelheid. Het begrijpen en toepassen van deze formule is essentieel voor piloten en ingenieurs om veilige en effectieve optrekmanoeuvres te garanderen.

Vpull-up=[g]npull-up-1ω

Snelheid langs de Yaw-as voor een kleine aanvalshoek

Snelheid langs de gieras voor kleine aanvalshoek is een maatstaf voor de Snelheid waarmee de positie van een object langs de gieras verandert, ten opzichte van de beweging als gevolg van een kleine aanvalshoek. Deze Snelheid wordt berekend door de Snelheid langs de rolas te vermenigvuldigen met de aanvalshoek in radialen, wat een cruciale parameter vormt in de aerodynamica en vluchtdynamiek.

w=uα

Snelheid langs de rolas voor een kleine aanvalshoek

Snelheid langs rolas voor kleine aanvalshoek is een maatstaf voor de rotatieSnelheid van een object rond zijn rolas wanneer de aanvalshoek relatief klein is, en wordt berekend door de Snelheid langs gierbeweging te delen door de aanvalshoek in radialen.

u=wα

Snelheid langs de steekas voor een kleine zijsliphoek

Snelheid langs de steekas voor kleine zijsliphoek is een maatstaf voor de Snelheid van een vliegtuig of een object dat onder een kleine sliphoek beweegt, wat essentieel is voor het begrijpen en voorspellen van het traject en de stabiliteit ervan.

v=βu

Snelheid langs de rolas voor een kleine zijsliphoek

De Snelheid langs de rolas voor kleine zijsliphoek is een maatstaf voor de Snelheid van het vliegtuig in de richting van de rolas wanneer de zijsliphoek klein is. Dit geeft inzicht in de stabiliteit en het reactievermogen van het vliegtuig tijdens de vlucht.

u=vβ

Snelheid door scherm gegeven hoofdverlies door scherm

De Velocity through Screen gegeven Head Loss through Screen is de veranderingsSnelheid van zijn positie ten opzichte van een referentiekader en is een functie van de tijd.

v=(hL0.0729)+u2

Snelheid boven scherm gezien hoofdverlies door scherm

De Velocity above Screen gegeven Head Loss through Screen is de veranderingsSnelheid van zijn positie ten opzichte van een referentiekader en is een functie van tijd.

u=v2-(hL0.0729)

Snelheidsgradiënten

De formule voor Snelheidsgradiënten wordt gedefinieerd als de verandering in Snelheid ten opzichte van de verandering in afstand langs de gemeten richting.

VG=πr2Ω30(r2-r1)

Hoe vind ik Formules?

Hier zijn een paar tips voor betere zoekresultaten.
Wees specifiek: hoe specifieker uw zoekopdracht, hoe beter uw resultaten.
Gebruik meerdere zoekwoorden: Combineer meerdere zoekwoorden om de resultaten te verfijnen.
Experimenteer met synoniemen: Verschillende termen kunnen verschillende resultaten opleveren.
Zoeken met jokertekens: Gebruik de operator * (sterretje). LET OP: deze operator werkt alleen aan het einde van een woord. Voorbeeld: Bio*, Gebied*, enz.

Als alternatief kunt u door de subcategorieën binnen navigeren om de gewenste formules te vinden.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!