Important Formulas of Scalene Triangle PDF

List of 28

Important Formulas of Scalene Triangle

1) Angles of Scalene Triangle Formulas 🕝

1.1) Larger Angle of Scalene Triangle Formula

Evaluate Formula [

$$\angle_{\text{Larger}} = a\cos\left(\frac{S_{\text{Medium}}^2 + S_{\text{Shorter}}^2 - S_{\text{Longer}}^2}{2 \cdot S_{\text{Medium}} \cdot S_{\text{Shorter}}}\right)$$

$$111.8037^{\circ} = a\cos\left(\frac{14\,\mathrm{m}^{2} + 10\,\mathrm{m}^{2} \cdot 20\,\mathrm{m}^{2}}{2 \cdot 14\,\mathrm{m} \cdot 10\,\mathrm{m}}\right)$$

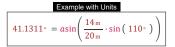
1.2) Larger Angle of Scalene Triangle given other Angles Formula C

Formula
$$\angle_{\text{Larger}} = \pi \cdot \left(\angle_{\text{Medium}} + \angle_{\text{Smaller}} \right)$$

Example with Units
$$110^{\circ} = 3.1416 - (40^{\circ} + 30^{\circ})$$

Evaluate Formula (

Evaluate Formula


1.3) Medium Angle of Scalene Triangle Formula

Formula
$$\angle_{Medium} = acos \left(\frac{S_{Longer}^{2} + S_{Shorter}^{2} \cdot S_{Medium}^{2}}{2 \cdot S_{Longer} \cdot S_{Shorter}^{2}} \right)$$

$$40.5358^{\circ} = a\cos\left(\frac{20\,\text{m}^{2} + 10\,\text{m}^{2} - 14\,\text{m}^{2}}{2 \cdot 20\,\text{m} \cdot 10\,\text{m}}\right)$$

1.4) Medium Angle of Scalene Triangle given Longer Side, Medium Side and Larger Angle Formula 🕝

Formula

Evaluate Formula @

Evaluate Formula

Evaluate Formula C

1.5) Smaller Angle of Scalene Triangle Formula 🕝

Formula

$$27.6604^{\circ} = a\cos\left(\frac{20\,\mathrm{m}^{2} + 14\,\mathrm{m}^{2} - 10\,\mathrm{m}^{2}}{2 \cdot 20\,\mathrm{m} \cdot 14\,\mathrm{m}}\right)$$

1.6) Smaller Angle of Scalene Triangle given Medium Side, Shorter Side and Medium Angle Formula 🗂

 $\angle_{Smaller} = a sin \left(\frac{S_{Shorter}}{S_{Medium}} \cdot sin \left(\angle_{Medium} \right) \right)$

$$27.3312^{\circ} = a \sin \left(\frac{10 \,\mathrm{m}}{14 \,\mathrm{m}} \cdot \sin \left(40^{\circ} \right) \right)$$

2) Area of Scalene Triangle Formulas (

2.1) Area of Scalene Triangle Formula 🗂

Formula

 $A = \frac{\sqrt{\left(S_{Longer} + S_{Medium} + S_{Shorter}\right) \cdot \left(S_{Medium} + S_{Shorter} - S_{Longer}\right) \cdot \left(S_{Longer} + S_{Shorter} - S_{Medium}\right) \cdot \left(S_{Longer} + S_{Medium} - S_{Shorter}\right)}}{\left(S_{Longer} + S_{Medium}\right) \cdot \left(S_{Longer} + S_{Medium}\right) \cdot \left(S_{Longer}\right) \cdot \left$

Example with Units

$$64.9923 \, \text{m}^2 = \frac{\sqrt{\left(20 \, \text{m} + 14 \, \text{m} + 10 \, \text{m}\,\right) \cdot \left(14 \, \text{m} + 10 \, \text{m} - 20 \, \text{m}\,\right) \cdot \left(20 \, \text{m} + 10 \, \text{m} - 14 \, \text{m}\,\right) \cdot \left(20 \, \text{m} + 14 \, \text{m} - 10 \, \text{m}\,\right)}}{4}$$

2.2) Area of Scalene Triangle given Larger Angle and Adjacent Sides Formula 🗂

$$A = \frac{S_{Medium} \cdot S_{Shorter} \cdot \sin\left(\angle_{Larger}\right)}{2} \qquad \boxed{65.7785_{m^2} = \frac{14_m \cdot 10_m \cdot \sin\left(110^{\circ}\right)}{2}}$$

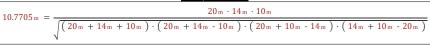
2.3) Area of Scalene Triangle given Medium Angle and Adjacent Sides Formula 🗂

 $A = \frac{S_{Longer} \cdot S_{Shorter} \cdot sin(\angle_{Medium})}{2}$

2.4) Area of Scalene Triangle given Smaller Angle and Adjacent Sides Formula 🕝

3) Circumcircle of Scalene Triangle Formulas 🗂

3.1) Area of Circumcircle of Scalene Triangle given Shorter Side and Smaller Angle Formula 🕝


 $A_{Circumcircle} = \frac{\pi}{4} \cdot \left(\frac{S_{Shorter}}{\sin\left(\angle_{Smaller}\right)} \right)^2 \left| \begin{array}{c} 314.1593\,\text{m}^2 = \overline{\frac{3.1416}{4} \cdot \left(\frac{10\,\text{m}}{\sin\left(30^\circ\right)}\right)^2} \end{array} \right|$

3.2) Circumference of Circumcircle of Scalene Triangle given Medium Side and Medium Angle Formula 🗂

 $C_{Circumcircle} = \pi \cdot \frac{S_{Medium}}{\sin\left(\angle_{Medium}\right)} \left| \quad | \quad 68.4243 \,\text{m} = 3.1416 \cdot \frac{14 \,\text{m}}{\sin\left(40^{\circ}\right)} \right|$

3.3) Circumradius of Scalene Triangle Formula

 $\frac{S_{Longer} \cdot S_{Medium} \cdot S_{Shorter}}{\sqrt{\left(S_{Longer} + S_{Medium} + S_{Shorter}\right) \cdot \left(S_{Longer} + S_{Medium} - S_{Shorter}\right) \cdot \left(S_{Longer} + S_{Shorter} - S_{Medium}\right) \cdot \left(S_{Medium} + S_{Shorter} - S_{Longer}\right)}}$

Evaluate Formula [

Evaluate Formula

Evaluate Formula

Evaluate Formula (

Evaluate Formula (

Evaluate Formula

3.4) Circumradius of Scalene Triangle given Longer Side and Larger Angle Formula 🕝

$$r_{c} = \frac{S_{Longer}}{2 \cdot sin\left(\angle_{Larger}\right)}$$

$$r_{c} = \frac{S_{Longer}}{2 \cdot \sin\left(\angle_{Larger} \right)} \boxed{10.6418_{m} = \frac{20_{m}}{2 \cdot \sin\left(110^{\circ} \right)}}$$

4) Heights of Scalene Triangle Formulas 🗂

4.1) Height on Longer Side of Scalene Triangle given Medium Side and Smaller Angle Formula 🕝

4.2) Height on Medium Side of Scalene Triangle given Shorter Side and Larger Angle Formula 🗂

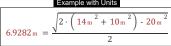
Example with Units
$$3969_{\rm m} = 10_{\rm m} \cdot \sin(110^{\circ})$$

Evaluate Formula (

4.3) Height on Shorter Side of Scalene Triangle given Longer Side and Medium Angle Formula 🕝

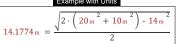
Example with Units
$$12.8558 \,\mathrm{m} = 20 \,\mathrm{m} \cdot \sin \left(40^{\circ} \right)$$

Evaluate Formula 🕝


Evaluate Formula

Evaluate Formula

Evaluate Formula


5) Medians of Scalene Triangle Formulas

5.1) Median on Longer Side of Scalene Triangle given Three Sides Formula C

5.2) Median on Medium Side of Scalene Triangle given Three Sides Formula C

2 · (S_{Longer} + S_{Shorter}

5.3) Median on Shorter Side of Scalene Triangle given Three Sides Formula

$2 \cdot \left(S_{\text{Longer}}^2 + S_{\text{Medium}}^2 \right)$

$$16.5227_{\text{m}} = \frac{\sqrt{2 \cdot \left(20_{\text{m}}^2 + 14_{\text{m}}^2\right) - 10_{\text{m}}^2}}{2}$$

Evaluate Formula

6) Other Formulas of Scalene Triangle Formulas 🗂

6.1) Inradius of Scalene Triangle by Heron's Formula Formula C

$$2.9542_{m} = \sqrt{\frac{(22_{m} - 20_{m}) \cdot (22_{m} - 14_{m}) \cdot (22_{m} - 10_{m})}{22_{m}}}$$

6.2) Perimeter of Scalene Triangle Formula C

 $P = S_{Longer} + S_{Medium} + S_{Shorter}$ 44m = 20m + 14m + 10m

Evaluate Formula

7) Sides of Scalene Triangle Formulas 🗗

7.1) Longer Side of Scalene Triangle given Larger Angle and other Sides Formula C

$$S_{Longer} = \sqrt{S_{Medium}}^2 + S_{Shorter}^2 - 2 \cdot S_{Medium} \cdot S_{Shorter} \cdot \cos(\angle_{Larger})$$

Evaluate Formula

Example with Units
$$19.7931_{\,m} \, = \, \sqrt{14_{\,m}^{\,\,\,2} + 10_{\,m}^{\,\,2} - 2 \cdot 14_{\,m} \cdot 10_{\,m} \cdot \cos\left(\,110^{\,\circ}\,\right)}$$

7.2) Longer Side of Scalene Triangle given Larger Angle, Medium Angle and Medium Side Formula 🕝

$$S_{Longer} = S_{Medium} \cdot \frac{\sin\left(\angle_{Larger}\right)}{\sin\left(\angle_{Medium}\right)}$$

$$20.4666_{m} = 14_{m} \cdot \frac{\sin\left(110^{\circ}\right)}{\sin\left(40^{\circ}\right)}$$

$$20.4666m = 14m \cdot \frac{\sin(110^{\circ})}{\sin(40^{\circ})}$$

7.3) Medium Side of Scalene Triangle given Medium Angle and other Sides Formula 🗂

$$\boxed{S_{\text{Medium}} = \sqrt{{S_{\text{Longer}}}^2 + {S_{\text{Shorter}}}^2 - 2 \cdot S_{\text{Longer}} \cdot S_{\text{Shorter}} \cdot \cos\left(\angle_{\text{Medium}}\right)}$$

Evaluate Formula

$$13.9134_{\text{m}} = \sqrt{20_{\text{m}}^2 + 10_{\text{m}}^2 - 2 \cdot 20_{\text{m}} \cdot 10_{\text{m}} \cdot \cos(40^{\circ})}$$

7.4) Medium Side of Scalene Triangle given Medium Angle, Smaller Angle and Shorter Side Formula 🗂

$$S_{\text{Medium}} = S_{\text{Shorter}} \cdot \frac{\sin(\angle_{\text{Medium}})}{\sin(\angle_{\text{Smaller}})} \left[12.8558_{\text{m}} = 10_{\text{m}} \cdot \frac{\sin(40^{\circ})}{\sin(30^{\circ})} \right]$$

$$2.8558 \,\mathrm{m} = 10 \,\mathrm{m} \cdot \frac{\sin\left(40^{\circ}\right)}{\sin\left(30^{\circ}\right)}$$

7.5) Shorter Side of Scalene Triangle given Smaller Angle and other Sides Formula 🕝

$$S_{Shorter} = \sqrt{S_{Longer}^{2} + S_{Medium}^{2}^{2} - 2 \cdot S_{Longer} \cdot S_{Medium} \cdot \cos(\angle_{Smaller})}$$

Evaluate Formula [

Evaluate Formula

Example with Units
$$10.5369_{\,m}\,=\,\sqrt{20_{\,m}^{\,\,2}+\,14_{\,m}^{\,\,2}\cdot2\cdot20_{\,m}\,\cdot14_{\,m}\,\cdot\cos\left(\,30^{\circ}\,\right)}$$

7.6) Shorter Side of Scalene Triangle given Smaller Angle, Larger Angle and Longer Side Formula 🗂

$$S_{Shorter} = S_{Longer} \cdot \frac{\sin(\angle_{Smaller})}{\sin(\angle_{Larger})}$$

$$10.6418_{m} = 20_{m} \cdot \frac{\sin(30^{\circ})}{\sin(110^{\circ})}$$

Variables used in list of Important Formulas of Scalene Triangle above

- ∠_{Larger} Larger Angle of Scalene Triangle (Degree)
- ∠ Medium Medium Angle of Scalene Triangle (Degree)
- ∠Smaller Smaller Angle of Scalene Triangle (Degree)
- A Area of Scalene Triangle (Square Meter)
- Acircumcircle Area of Circumcircle of Scalene Triangle (Square Meter)
- Ccircumcircle Circumference of Circumcircle of Scalene
 Triangle (Meter)
- h_{Longer} Height on Longer Side of Scalene Triangle (Meter)
- h_{Medium} Height on Medium Side of Scalene Triangle (Meter)
- hShorter Height on Shorter Side of Scalene Triangle (Meter)
- M_{Longer} Median on Longer Side of Scalene Triangle (Meter)
- M_{Medium} Median on Medium Side of Scalene Triangle (Meter)
- M_{Shorter} Median on Shorter Side of Scalene Triangle (Meter)
- P Perimeter of Scalene Triangle (Meter)
- r_c Circumradius of Scalene Triangle (Meter)
- r_i Inradius of Scalene Triangle (Meter)
- S Semiperimeter of Scalene Triangle (Meter)
- SLonger Longer Side of Scalene Triangle (Meter)
- S_{Medium} Medium Side of Scalene Triangle (Meter)
- Shorter Shorter Side of Scalene Triangle (Meter)

Constants, Functions, Measurements used in list of Important Formulas of Scalene Triangle above

- constant(s): pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: acos, acos(Number)

The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

• Functions: asin, asin(Number)

The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

- Functions: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Functions: sin, sin(Angle)
 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion

Download other Important Triangle PDFs

- Important Equilateral Triangle Formulas
- Important Isosceles Right Triangle Formulas
- Important Isosceles Triangle Formulas
- Important Right Angled Triangle Formulas
- Important Scalene Triangle Formulas
- Important Triangle Formulas

Try our Unique Visual Calculators

- M Percentage share
- Improper fraction

• Figure 10 HCF of two numbers

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 1:06:41 PM UTC