Important Forces sur le système de direction et les essieux Formules PDF

Formules
Exemples
avec unités

Liste de 14

Important Forces sur le système de direction et les essieux Formules

Évaluer la formule [7

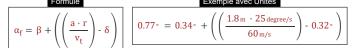
Évaluer la formule

Évaluer la formule 🕝

Évaluer la formule (

Évaluer la formule

Évaluer la formule 🕝


1) Accélération centripète dans les virages Formule 🕝

2) Accélération latérale dans les virages de la voiture Formule 🕝

Formule Exemple avec Unités
$$A_{\alpha} = \frac{a_c}{g} \qquad \qquad 40.8163 \, \text{m/s}^2 = \frac{400 \, \text{m/s}^2}{9.8 \, \text{m/s}^2}$$

3) Angle de dérapage avant à vitesse de virage élevée Formule 🗂

4) Angle de glissement arrière dû aux virages à grande vitesse Formule

Formule Exemple avec Unités
$$\alpha_r = \beta \cdot \left(\frac{b \cdot r}{v_t}\right) \boxed{ 0.2567^\circ = 0.34^\circ \cdot \left(\frac{0.2\,\text{m} \cdot 25\,\text{degree/s}}{60\,\text{m/s}}\right) }$$

5) Charge sur l'essieu arrière dans les virages à grande vitesse Formule 🗂

Formule Exemple avec Unités
$$W_r = \frac{W \cdot a}{L} \qquad 13333.3333 \, \text{N} = \frac{20000 \, \text{N} \cdot 1.8 \, \text{m}}{2.7 \, \text{m}}$$

6) Charge sur l'essieu avant dans les virages à grande vitesse Formule 🕝

$$\begin{tabular}{|c|c|c|c|c|} \hline Formule & Exemple avec Unités \\ \hline $W_{fl} = \frac{W \cdot b}{L}$ & $1481.4815\,_N = \frac{20000\,_N \cdot 0.2\,_m}{2.7\,_m}$ \\ \hline \end{tabular}$$

7) Largeur de voie du véhicule en utilisant la condition d'Ackermann Formule 🗂

8) Moment concernant l'axe de direction dû au couple de transmission Formule 🗂 Évaluer la formule 🕝

$$\mathbf{M}_{sa} = \mathbf{F}_{x} \cdot \left(\left(\mathbf{d} \cdot \cos \left(\mathbf{v} \right) \cdot \cos \left(\lambda_{l} \right) \right) + \left(\mathbf{R}_{e} \cdot \sin \left(\lambda_{l} + \zeta \right) \right) \right)$$

$$\boldsymbol{M}_{sa} = \boldsymbol{F}_{x} \cdot \left(\left(\, \boldsymbol{d} \cdot \cos \left(\, \boldsymbol{\nu} \, \right) \cdot \cos \left(\, \boldsymbol{\lambda}_{l} \, \right) \, \right) + \left(\, \boldsymbol{R}_{e} \cdot \sin \left(\, \boldsymbol{\lambda}_{l} + \zeta \, \right) \, \right) \right)$$

 $170.3342\,{\tt N^*m}\,=\,450\,{\tt N}\,\cdot\left(\,\left(\,0.21_{\,\rm m}\,\cdot\cos\left(\,4.5^{\,\circ}\,\right)\,\cdot\cos\left(\,10^{\,\circ}\,\right)\,\right)\,+\,\left(\,0.35_{\,\rm m}\,\cdot\sin\left(\,10^{\,\circ}\,+\,19.5^{\,\circ}\,\,\right)\,\right)\,\right)$

9) Moment d'auto-alignement ou couple sur les roues Formule 🕝

$$\mathbf{M}_{at} = \left(\mathbf{M}_{zl} + \mathbf{M}_{zr}\right) \cdot \cos\left(\lambda_{l}\right) \cdot \cos\left(\nu\right)$$

Exemple avec Unités

 $100.1407 \,\mathrm{N^*m} = \left(27 \,\mathrm{N^*m} + 75 \,\mathrm{N^*m}\right) \cdot \cos\left(10^{\circ}\right) \cdot \cos\left(4.5^{\circ}\right)$

10) Moment dû à la force verticale sur les roues pendant la direction Formule 🕝

Évaluer la formule (

$$M_{v} = \left(\left(F_{zl} - F_{zr} \right) \cdot d_{L} \cdot \sin \left(\nu \right) \cdot \cos \left(\delta \right) \right) - \left(\left(F_{zl} + F_{zr} \right) \cdot d_{L} \cdot \sin \left(\lambda_{l} \right) \cdot \sin \left(\delta \right) \right)$$

$$0.1084 \, \text{N*m} = \left(\left(\, 650 \, \text{N} \, - \, 600 \, \text{N} \, \right) \cdot 0.04 \, \text{m} \, \cdot \sin \left(\, 4.5^{\circ} \, \right) \cdot \cos \left(\, 0.32^{\circ} \, \right) \, \right) - \left(\left(\, 650 \, \text{N} \, + \, 600 \, \text{N} \, \right) \cdot 0.04 \, \text{m} \, \cdot \sin \left(\, 10^{\circ} \, \right) \cdot \sin \left(\, 0.32^{\circ} \, \right) \, \right)$$

11) Moment résultant de la force de traction sur les roues pendant la direction Formule 🗂

12) Moment survenant en raison des forces latérales sur les roues pendant la direction Formule 🧖

 $\begin{array}{c|c} & & & & \\ \hline \textbf{Formule} & & & & \\ \hline \textbf{M}_l = \left(\ F_{yl} + F_{yr} \ \right) \cdot \textbf{R}_e \cdot \tan \left(\ \nu \ \right) \\ \hline \end{array} \\ \hline 28.372 \, \texttt{N*m} = \left(\ 510 \, \texttt{N} \ + 520 \, \texttt{N} \ \right) \cdot 0.35 \, \texttt{m} \cdot \tan \left(\ 4.5 \, ^{\circ} \ \right) \\ \hline \end{array}$

13) Vitesse caractéristique des véhicules sous-vireurs Formule 🕝

$$v_{u} = \sqrt{\frac{57.3 \cdot L \cdot g}{K}} \qquad 913.9383 \, \text{m/s} = \sqrt{\frac{57.3 \cdot 2.7 \, \text{m} \cdot 9.8 \, \text{m/s}^{2}}{0.104 \, \text{o}}}$$

14) Vitesse critique pour un véhicule en survirage Formule C

Formule

$$v_{o} = -\sqrt{\frac{57.3 \cdot L \cdot g}{K}} \qquad -913.9383 \, \text{m/s} \ = \ -\sqrt{\frac{57.3 \cdot 2.7 \, \text{m} \cdot 9.8 \, \text{m/s}^{2}}{0.104^{\circ}}}$$

Variables utilisées dans la liste de Forces sur le système de direction et les essieux Formules ci-dessus

- a Distance du centre de gravité à l'essieu avant (Mètre)
- a_c Accélération centripète dans les virages (Mètre / Carré Deuxième)
- a_{tw} Largeur de voie du véhicule (Mètre)
- A_α Accélération latérale horizontale (Mètre / Carré
 Deuxième)
- **b** Distance du centre de gravité à l'essieu arrière (Mètre)
- d Distance entre l'axe de direction et le centre du pneu (Mètre)
- d_L Décalage latéral au sol (Mètre)
- F_x Force de traction (Newton)
- F_{xl} Force de traction sur les roues gauches (Newton)
- $\mathbf{F}_{\mathbf{xr}}$ Force de traction sur les roues droites (Newton)
- F_{vI} Force latérale sur les roues gauches (Newton)
- F_{vr} Force latérale sur les roues droites (Newton)
- F_{zl} Charge verticale sur les roues gauches (Newton)
- F_{zr} Charge verticale sur les roues droites (Newton)
- g Accélération due à la gravité (Mètre / Carré Deuxième)
- K Pente de sous-virage (Degré)
- L Empattement du véhicule (Mètre)
- Mat Moment d'auto-alignement (Newton-mètre)
- M_I Moment sur les roues résultant d'une force latérale (Newton-mètre)
- M_{sa} Moment concernant l'axe de direction dû au couple de transmission (Newton-mètre)
- M_t Moment résultant de la force de traction (Newtonmètre)
- M_V Moment résultant des forces verticales sur les roues (Newton-mètre)
- M_{zl} Moment d'alignement agissant sur les pneus gauches (Newton-mètre)
- M_{zr} Moment d'alignement sur les bons pneus (Newtonmètre)
- r Vitesse de lacet (Degré par seconde)
- R Rayon de virage (Mètre)
- Re Rayon du pneu (Mètre)
- V₀ Vitesse critique pour les véhicules en survirage (Mêtre par seconde)
- V_t Vitesse totale (Mètre par seconde)

Constantes, fonctions, mesures utilisées dans la liste des Forces sur le système de direction et les essieux Formules cidessus

- Les fonctions: cos, cos(Angle)
 Le cosinus d'un angle est le rapport du côté adjacent à l'angle à l'hypoténuse du triangle.
- Les fonctions: cot, cot(Angle)
 La cotangente est une fonction trigonométrique définie comme le rapport du côté adjacent au côté opposé dans un triangle rectangle.
- Les fonctions: sin, sin(Angle)
 Le sinus est une fonction trigonométrique qui décrit le rapport entre la longueur du côté opposé d'un triangle rectangle et la longueur de l'hypoténuse.
- Les fonctions: sqrt, sqrt(Number)
 Une fonction racine carrée est une fonction qui prend un nombre non négatif comme entrée et renvoie la racine carrée du nombre d'entrée donné.
- Les fonctions: tan, tan(Angle)
 La tangente d'un angle est le rapport trigonométrique de la longueur du côté opposé à un angle à la longueur du côté adjacent à un angle dans un triangle rectangle.
- La mesure: Longueur in Mètre (m)
 Longueur Conversion d'unité
- La mesure: La rapidité in Mètre par seconde (m/s)
 La rapidité Conversion d'unité
- La mesure: Accélération in Mètre / Carré Deuxième (m/s²)
 Accélération Conversion d'unité (*)

La mesure: Force in Newton (N)

Force Conversion d'unité

La mesure: Angle in Degré (°)
 Angle Conversion d'unité

 La mesure: Vitesse angulaire in Degré par seconde (degree/s)

Vitesse angulaire Conversion d'unité

La mesure: Couple in Newton-mètre (N*m)
 Couple Conversion d'unité

- V_u Vitesse caractéristique des véhicules sous-vireurs (Mètre par seconde)
- W Charge totale du véhicule (Newton)
- W_{fl} Charge sur l'essieu avant dans les virages à grande vitesse (Newton)
- W_r Charge sur l'essieu arrière dans les virages à grande vitesse (Newton)
- α_f Angle de glissement de la roue avant (Degré)
- α_r Angle de glissement de la roue arrière (Degré)
- β Angle de glissement de la carrosserie du véhicule (Degré)
- δ Angle de braquage (Degré)
- δ_i Roue intérieure d'angle de braquage (Degré)
- δ_o Angle de braquage Roue extérieure (Degré)
- ζ Angle fait par l'essieu avant avec horizontal (Degré)
- λ_I Angle d'inclinaison latérale (Degré)
- **v** Angle de chasse (Degré)

Téléchargez d'autres PDF Important Essieu avant et direction

- Important Forces sur le système de direction
 Important Système de direction Formules et les essieux Formules
 - Important Dynamique de tournage
- Important Rapport de mouvement Formules
- Formules (

Essayez nos calculatrices visuelles uniques

- Pourcentage de diminution
- PGCD de trois nombres

Multiplier fraction

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:38:40 AM UTC