# Important Torsion of Bars Formulas PDF



## List of 13

Important Torsion of Bars Formulas

#### 1) Elastic Perfectly Plastic Materials Formulas (

1.1) Elasto Plastic Yielding Torque for Hollow Shaft Formula

Evaluate Formula

$$T_{ep} = \pi \cdot \tau_0 \cdot \left( \frac{\rho^3}{2} \cdot \left( 1 \cdot \left( \frac{r_1}{\rho} \right)^4 \right) + \left( \frac{2}{3} \cdot r_2^3 \right) \cdot \left( 1 \cdot \left( \frac{\rho}{r_2} \right)^3 \right) \right)$$

Example with Units

$$2.6E + 8\,\text{nmm} \ = \ 3.1416 \cdot 145\,\text{Mpa} \cdot \left(\frac{80\,\text{mm}}{2} \cdot \left(1 - \left(\frac{40\,\text{mm}}{80\,\text{mm}}\right)^4\right) + \left(\frac{2}{3} \cdot 100\,\text{mm}^3\right) \cdot \left(1 - \left(\frac{80\,\text{mm}}{100\,\text{mm}}\right)^3\right)\right)$$

#### 1.2) Elasto Plastic Yielding Torque for Solid Shaft Formula

Example with Units

Evaluate Formula

$$T_{ep} = \frac{2}{3} \cdot \pi \cdot r_2^{3} \cdot \tau_0 \cdot \left( 1 - \frac{1}{4} \cdot \left( \frac{\rho}{r_2} \right)^{3} \right)$$

$$T_{ep} = \frac{2}{3} \cdot \pi \cdot r_{2}^{3} \cdot \tau_{0} \cdot \left(1 - \frac{1}{4} \cdot \left(\frac{\rho}{r_{2}}\right)^{3}\right)$$

$$2.6E + 8 \, \text{N*mm} = \frac{2}{3} \cdot 3.1416 \cdot 100 \, \text{mm}^{3} \cdot 145 \, \text{MPa} \cdot \left(1 - \frac{1}{4} \cdot \left(\frac{80 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right)$$

## 1.3) Full Yielding Torque for Hollow Shaft Formula C

Formula

Evaluate Formula

$$T_{f} = \frac{2}{3} \cdot \pi \cdot r_{2}^{3} \cdot \boldsymbol{\tau}_{0} \cdot \left(1 \cdot \left(\frac{r_{1}}{r_{2}}\right)^{3}\right)$$

$$T_{f} = \frac{2}{3} \cdot \pi \cdot r_{2}^{3} \cdot \tau_{0} \cdot \left(1 - \left(\frac{r_{1}}{r_{2}}\right)^{3}\right)$$

$$2.8E + 8 \, \text{N*mm} = \frac{2}{3} \cdot 3.1416 \cdot 100 \, \text{mm}^{3} \cdot 145 \, \text{MPa} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right)$$

# 1.4) Full Yielding Torque for Solid Shaft Formula 🕝

Evaluate Formula

$$T_{f} = \frac{2}{3} \cdot \pi \cdot \tau_{0} \cdot r_{2}^{3}$$

$$3E + 8 N^{*}mm = \frac{2}{3} \cdot 3.1416 \cdot 145 MPa \cdot 100 mm^{3}$$

# 1.5) Incipient Yielding Torque for Hollow Shaft Formula 🕝

Evaluate Formula

$$T_{i} = \frac{\pi}{2} \cdot r_{2}^{3} \cdot \tau_{0} \cdot \left( 1 - \left( \frac{r_{1}}{r_{2}} \right)^{4} \right)$$

$$T_{i} = \frac{\pi}{2} \cdot r_{2}^{3} \cdot \tau_{0} \cdot \left(1 \cdot \left(\frac{r_{1}}{r_{2}}\right)^{4}\right) \left[2.2E + 8 \, \text{N}^{\text{mm}} = \frac{3.1416}{2} \cdot 100 \, \text{mm}^{3} \cdot 145 \, \text{MPa} \cdot \left(1 \cdot \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{4}\right) \right]$$

# 1.6) Incipient Yielding Torque for Solid Shaft Formula C

 $T_i = \frac{\pi \cdot r_2^3 \cdot \tau_0}{2}$  2.3E+8 N\*mm =  $\frac{3.1416 \cdot 100 \text{ mm}^3 \cdot 145 \text{ MPa}}{2}$ 

Evaluate Formula

# 2) Elastic Work Hardening Material Formulas 🕝

2.1) Elasto Plastic Yielding Torque in Work Hardening for Hollow Shaft Formula 🕝

$$T_{ep} = \frac{2 \cdot \pi \cdot \tau_{nonlinear} \cdot r_{2}^{3}}{3} \cdot \left(\frac{3 \cdot \rho^{3}}{r_{2}^{3} \cdot (n+3)} \cdot \left(\frac{3}{n+3}\right) \cdot \left(\frac{r_{1}}{\rho}\right)^{n} \cdot \left(\frac{r_{1}}{r_{2}}\right)^{3} + 1 \cdot \left(\frac{\rho}{r_{2}}\right)^{3}\right)$$

$$3.3E + 8 \, \text{N}^{\star} \text{mm} \, = \, \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \, \cdot \, 100 \, \text{mm}^{\,3}}{3} \cdot \left( \frac{3 \cdot 80 \, \text{mm}^{\,3}}{100 \, \text{mm}^{\,3} \cdot \left( \, 0.25 + 3 \, \right)} \cdot \left( \frac{3}{0.25 + 3} \right) \cdot \left( \frac{40 \, \text{mm}}{80 \, \text{mm}} \right)^{0.25} \cdot \left( \frac{40 \, \text{mm}}{100 \, \text{mm}} \right)^{3} + 1 \cdot \left( \frac{80 \, \text{mm}}{100 \, \text{mm}} \right)^{3} \right)$$

2.2) Elasto Plastic Yielding Torque in Work Hardening for Solid Shaft Formula 🕝

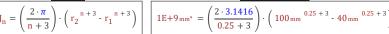
 $T_{\text{ep}} = \frac{2 \cdot \pi \cdot \tau_{\text{nonlinear}} \cdot r_2^3}{3} \cdot \left( 1 - \left( \frac{n}{n+3} \right) \cdot \left( \frac{\rho}{r_2} \right)^3 \right)$ 

3.5E+8 N\*mm = 
$$\frac{2 \cdot 3.1416 \cdot 175 \,_{\text{MPa}} \cdot 100 \,_{\text{mm}}}{3} \cdot \left(1 \cdot \left(\frac{0.25}{0.25 + 3}\right) \cdot \left(\frac{80 \,_{\text{mm}}}{100 \,_{\text{mm}}}\right)^{3}\right)$$

2.3) Full Yielding Torque in Work Hardening for Hollow Shaft Formula 🕝

$$T_{f} = \frac{2 \cdot \pi \cdot \tau_{nonlinear} \cdot r_{2}^{-3}}{3} \cdot \left(1 - \left(\frac{r_{1}}{r_{2}}\right)^{3}\right) \qquad 3.4E + 8 \, \text{N*mm} = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot \pi \cdot \tau_{nonlinear} \cdot r_{2}^{-3}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{MPa} \cdot 100 \, \text{mm}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{mm}}{100 \, \text{mm}}\right)^{3}\right) = \frac{2 \cdot 3.1416 \cdot 175 \, \text{mpa}}{3} \cdot \left(1 - \left(\frac{40 \, \text{$$

2.4) Full Yielding Torque in Work Hardening for Solid Shaft Formula [7]


$$T_{f} = \frac{2 \cdot \pi \cdot \tau_{\text{nonlinear}} \cdot r_{2}^{3}}{3}$$

$$3.7E + 8 N^{*}mm = \frac{2 \cdot 3.1416 \cdot 175 \text{ Mpa} \cdot 100 \text{ mm}}{3}$$

2.5) Incipient Yielding Torque in Work Hardening for Hollow Shaft Formula

 $T_{i} = \frac{\tau_{nonlinear} \cdot J_{n}}{r_{i}^{n}} \qquad 1804.9536 \, N^{*}mm = \frac{175 \, MPa \cdot 5800 \, mm^{4}}{100 \, mm}^{0.25}$ 

 $J_{n} = \left(\frac{2 \cdot \pi}{n+3}\right) \cdot \left(r_{2}^{n+3} - r_{1}^{n+3}\right)$   $1E+9 \text{ mm}^{4} = \left(\frac{2 \cdot 3.1416}{0.25+3}\right) \cdot \left(100 \text{ mm}^{0.25+3} - 40 \text{ mm}^{0.25+3}\right)$ 



Evaluate Formula C

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula (

Evaluate Formula 🕝

Evaluate Formula 🕝

# Variables used in list of Torsion of Bars Formulas above

- J<sub>n</sub> Nth Polar Moment of Inertia (Millimeter⁴)
- n Material Constant
- r<sub>1</sub> Inner Radius of Shaft (Millimeter)
- r<sub>2</sub> Outer Radius of Shaft (Millimeter)
- Tep Elasto Plastic Yielding Torque (Newton Millimeter)
- Tf Full Yielding Torque (Newton Millimeter)
- Ti Incipient Yielding Torque (Newton Millimeter)
- p Radius of Plastic Front (Millimeter)
- τ<sub>0</sub> Yield Stress in Shear (Megapascal)
- $\tau_{nonlinear}$  Yield Shear Stress(non-linear) (Megapascal)

#### Constants, Functions, Measurements used in list of Torsion of Bars Formulas above

- constant(s): pi, 3.14159265358979323846264338327950288
   Archimedes' constant
- Measurement: Length in Millimeter (mm)
  Length Unit Conversion
- Measurement: Torque in Newton Millimeter (N\*mm)

  Torque Unit Conversion
- Measurement: Second Moment of Area in Millimeter<sup>4</sup> (mm<sup>4</sup>)
   Second Moment of Area Unit Conversion
- Measurement: Stress in Megapascal (MPa)
  Stress Unit Conversion

# **Download other Important Theory of Plasticity PDFs**

Important Torsion of Bars Formulas

## **Try our Unique Visual Calculators**

Percentage increase

HCF calculator

Mixed fraction

# Please SHARE this PDF with someone who needs it!

# This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 3:42:44 AM UTC