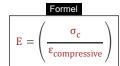
Wichtig Beziehung zwischen Stress und Belastung **Formeln PDF**



Formeln Beispiele mit Einheiten

Liste von 19

Wichtig Beziehung zwischen Stress und **Belastung Formeln**

Beispiel mit Einheiten

2) Elastizitätsmodul bei Normalspannung Formel C

Beispiel mit Einheiten

3) Elastizitätsmodul bei Zugspannung Formel

Beispiel mit Einheiten $E = \left(\frac{\sigma_t}{\varepsilon_{\text{toncilo}}}\right) \left| 5.65 \,\text{MPa} \right| = \left(\frac{3.39 \,\text{MPa}}{0.6}\right)$

4) Sicherheitsfaktor Formel

5) Sicherheitsmarge Formel C

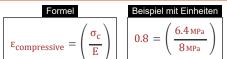
Formel $M.O.S. = F.O.S - 1 \mid 3 = 4 - 1$

6) Steifigkeitsmodul bei Schubspannung Formel C

Beispiel mit Einheiten $2.8571 \,\mathrm{MPa} = \left(\frac{5 \,\mathrm{MPa}}{1.75}\right)$ Formel auswerten

Formel auswerten

Formel auswerten


Formel auswerten

Formel auswerten

Formel auswerten

7) Beanspruchung Formeln (?)

7.1) Druckspannung bei Druckspannung Formel

Formel auswerten

7.2) Längsdehnung Formel 🕝

$$\begin{array}{c|c} \textbf{Formel} & \textbf{Beispiel mit Einheiten} \\ \epsilon_{longitudinal} = \frac{\Delta L}{L_0} & 0.22 = \frac{1100\, \text{mm}}{5000\, \text{mm}} \\ \end{array}$$

Formel auswerten

7.3) Querdehnung unter Verwendung der Poisson-Zahl Formel

$$\epsilon_L = -\left(\begin{array}{c} \mathbf{v} \cdot \mathbf{\epsilon}_{longitudinal} \end{array} \right)$$

Formel Beispiel
$$\varepsilon_{L} = -\left(\mathbf{v} \cdot \varepsilon_{longitudinal}\right) \quad \boxed{ -0.0186 = -\left(0.3 \cdot 0.062\right)}$$

Formel auswerten []

7.4) Schubdehnung, wenn Steifigkeitsmodul und Schubspannung Formel 🕝

Formel auswerten 🕝

7.5) Seitliche Dehnung bei Abnahme der Breite Formel

Formel
$$\varepsilon_{L} = \frac{\Delta b}{b}$$

Formel Beispiel mit Einheiten
$$\epsilon_L = \frac{\Delta b}{b} \qquad 0.23 = \frac{46 \, \text{mm}}{200 \, \text{mm}}$$

Formel auswerten

7.6) Seitliche Dehnung bei Abnahme der Tiefe Formel C

Formel
$$\epsilon_L = \frac{\Delta d}{d}$$

Formel auswerten

7.7) Zugspannung bei gegebenem Elastizitätsmodul Formel

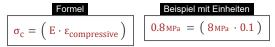
Formel Beispiel mit Einheiten
$$\epsilon_{tensile} = \left(\frac{\sigma_t}{E}\right) \qquad 0.4238 = \left(\frac{3.39\,\text{MPa}}{8\,\text{MPa}}\right)$$

Formel auswerten [

8) Betonen Formeln 🕝

8.1) Druckspannung bei Druckspannung Formel

Formel auswerten


Formel auswerten

Formel auswerten

Formel auswerten [7]

Formel auswerten

Formel auswerten

8.2) Höchstspannung unter Verwendung des Sicherheitsfaktors Formel 🕝

8.3) Normalspannung bei gegebenem Elastizitätsmodul Formel 🕝

8.4) Scherspannung bei gegebener Scherdehnung Formel

8.5) Zugspannung bei gegebenem Elastizitätsmodul Formel

8.6) Zulässige Spannung unter Verwendung des Sicherheitsfaktors Formel

In der Liste von Beziehung zwischen Stress und Belastung Formeln oben verwendete Variablen

- **b** Breite der Komponente (Millimeter)
- d Tiefe der Komponente (Millimeter)
- E Elastizitätsmodul (Megapascal)
- F.O.S Sicherheitsfaktor
- G Steifigkeitsmodul (Megapascal)
- L₀ Originallänge (Millimeter)
- M.O.S. Sicherheitsmarge
- P Zulässige Belastung (Megapascal)
- U Größter Stress (Megapascal)
- Δb Abnahme der Breite (Millimeter)
- Δd Abnahme der Tiefe (Millimeter)
- AL Längenänderung der Komponente (Millimeter)
- ε_{component} Dehnung in der Komponente
- ξ_{compressive} Druckspannung
- ε_I Seitliche Belastung
- ξlongitudinal Längsdehnung
- ε_{tensile} Zugbelastung
- σ_c Druckspannung (Megapascal)
- σ_n Normaler Stress (Megapascal)
- σ_t Zugspannung (Megapascal)
- ν Poisson-Zahl
- η Scherbelastung
- τ Scherspannung (Megapascal)

Konstanten, Funktionen, Messungen, die in der Liste von Beziehung zwischen Stress und Belastung Formeln oben verwendet werden

- Messung: Länge in Millimeter (mm)
 Länge Einheitenumrechnung
- Messung: Druck in Megapascal (MPa)
 Druck Einheitenumrechnung
- Messung: Betonen in Megapascal (MPa)

 Betonen Einheitenumrechnung

Laden Sie andere Wichtig Stress und Belastung-PDFs herunter

- Wichtig Direkte Dehnungen der Diagonale Formeln
- Wichtig Elastische Konstanten Formeln
- Wichtig Mohrs Kreis Formeln
- Wichtig Hauptspannungen und dehnungen Formeln

- Wichtig Beziehung zwischen Stress und Belastung Formeln
- Wichtig Belastungsenergie Formeln
- Wichtig Wärmebelastung Formeln
- Wichtig Arten von Spannungen Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- William
 Umgekehrter Prozentsatz
- GGT rechner

• \overline Einfacher bruch 🗂

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

9/23/2024 | 11:30:59 AM UTC