Important Basics of Modes of Heat Transfer Formulas PDF

11) Thermal Resi	stance in Convection Heat Tra	ansfer Formula 🕝
Formula D 1	Example with Units	Evaluate Formula 🕝
$R_{\text{th}} = \frac{1}{A_{\text{e}} \cdot h_{\text{co}}}$	$0.0045 \text{K/W} = \frac{11.1 \text{m}^2 \cdot 20 \text{W/m^{2*}K}}{11.1 \text{m}^2 \cdot 20 \text{W/m^{2*}K}}$	
12) Therma	I Resistance of Spherical Wall	Formula 🕝

	Formula	Example with Units	Evaluate Formula 🕝				
	$\mathbf{r}_{\text{th}} = \frac{\mathbf{r}_2 \cdot \mathbf{r}_1}{4 \cdot \boldsymbol{\pi} \cdot \mathbf{k} \cdot \mathbf{r}_1 \cdot \mathbf{r}_2}$	$0.0013 \text{K/W} = \frac{6 \text{m} - 5 \text{m}}{4 \cdot 3.1416 \cdot 2 \text{W/(m*K)} \cdot 5 \text{m} \cdot 6 \text{m}}$					
13) Total Emissive Power of Radiating Body Formula 🕝							
	Formula	Example with Units	Evaluate Formula				

Formu	ıla	Example with Units	LVa
$E_{b} = \left(\epsilon \cdot \left(T_{e}\right)^{4}\right)$	· [Stefan-BoltZ]	$2.812 w = \left(0.95 \cdot \left(85 \kappa \right)^4 \right) \cdot 5.7 \text{E-8}$	

Variables used in list of Basics of Modes of Heat Transfer Formulas above

- Abase Base Area (Square Meter)
- Ac Cross Sectional Area (Square Meter)
- A_e Exposed Surface Area (Square Meter)
- A_{expo} Exposed Surface Conv Area (Square Meter)
- **C**_o Specific Heat Capacity (Joule per Kilogram per K)
- Eb Emissive Power per Unit Area (Watt)
- ELeaving Energy Leaving Surface (Joule)
- F Geometric View Factor
- h_{co} Coefficient of Convective Heat Transfer (Watt per Square Meter per Kelvin)
- h_{transfer} Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- I Electric Current (Ampere)
- J Radiosity (Watt per Square Meter)
- **k** Thermal Conductivity (Watt per Meter per K)
- k₁ Thermal Conductivity of Heat (Watt per Meter per K)
- K_{cond} Thermal Conductivity of Conduction (Watt per Meter per K)
- I Length of Cylinder (Meter)
- q Heat Flow Rate (Watt)
- Q Heat (Joule)
- **q**overall Overall Heat Transfer (Watt)
- R Electric Resistance (Ohm)
- r1 Radius of 1st Concentric Sphere (Meter)
- r2 Radius of 2nd Concentric Sphere (Meter)
- R_h Thermal Resistance of Heat Flow (Kelvin per Watt)
- rinner Inner Radius of Cylinder (Meter)
- router Outer Radius of Cylinder (Meter)

Constants, Functions, Measurements used in list of Basics of Modes of Heat Transfer Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- constant(s): [Stefan-BoltZ], 5.670367E-8 Stefan-Boltzmann Constant
- Functions: In, In(Number) The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Electric Current in Ampere (A)
 Electric Current Unit Conversion
- Measurement: Temperature in Kelvin (K) Temperature Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Power in Watt (W) Power Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω) Electric Resistance Unit Conversion
- Measurement: Temperature Difference in Kelvin
 (K)
 - Temperature Difference Unit Conversion 🕝
- Measurement: Thermal Resistance in Kelvin per Watt (K/W)
 - Thermal Resistance Unit Conversion 🕝
- Measurement: Electric Potential in Volt (V)
 Electric Potential Unit Conversion
- Measurement: Specific Heat Capacity in Joule per Kilogram per K (J/(kg*K))

- r_{th} Thermal Resistance of Sphere Without Convection (Kelvin per Watt)
- Rth Thermal Resistance (Kelvin per Watt)
- SABody Body Surface Area (Square Meter)
- T₁ Temperature of Surface 1 (Kelvin)
- T₂ Temperature of Surface 2 (Kelvin)
- T_a Ambient Air Temperature (Kelvin)
- Te Effective Radiating Temperature (Kelvin)
- t_i Inside Temperature (Kelvin)
- to Outside Temperature (Kelvin)
- tsec Time in seconds (Second)
- Tw Surface Temperature (Kelvin)
- V Voltage (Volt)
- W Width of Plane Surface (Meter)
- α Thermal Diffusivity (Square Meter Per Second)
- ΔT Temperature Difference (Kelvin)
- ΔT_{Overall} Overall Temperature Difference (Kelvin)
- ε Emissivity
- p Density (Kilogram per Cubic Meter)
- ΣR_{Thermal} Total Thermal Resistance (Kelvin per Watt)

Specific Heat Capacity Unit Conversion 🕝

- Measurement: Heat Flux Density in Watt per Square Meter (W/m²) Heat Flux Density Unit Conversion
- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m^{2*}K) Heat Transfer Coefficient Unit Conversion C
- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion
- Measurement: Diffusivity in Square Meter Per Second (m²/s)
 Diffusivity Unit Conversion

- Important Basics of Modes of Heat Transfer Formulas C
- Important Convection Heat Transfer
 Formulas

Try our Unique Visual Calculators

- 🔀 Percentage change 🕝
- LCM of two numbers

• 🜆 Proper fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

10/29/2024 | 11:25:50 AM UTC

