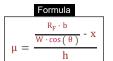
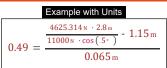
Important All Wheel Braking for Racing Car Formulas **PDF**



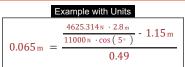

List of 25

Important All Wheel Braking for Racing Car **Formulas**

1) Effects on Front Wheel Formulas (7)

1.1) Friction Coefficient between Wheel and Road Surface with Front Wheel Brake Formula 🕝

1.2) Front Wheel Reaction with All Wheel Braking Formula C


$$R_{F} = W \cdot (x + \mu \cdot h) \cdot \frac{\cos(\theta)}{b}$$

Example with Units

$$4625.3142 \,\text{M} \,=\, 11000 \,\text{N} \,\cdot\, \left(\, 1.15 \,\text{m} \,+\, 0.49 \cdot 0.065 \,\text{m}\,\,\right) \cdot \frac{\cos\left(\,5^{\circ}\,\,\right)}{2.8 \,\text{m}}$$

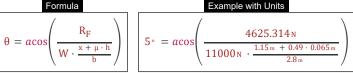
1.3) Height of C.G. from Road Surface with Front Wheel Brake Formula [7]

Formula

Evaluate Formula C

Evaluate Formula


Evaluate Formula


1.4) Horizontal Distance of C.G from Rear Axle with Front Wheel Brake Formula 🕝 Evaluate Formula 🕝

$$x = \frac{R_F \cdot b}{W \cdot \cos\left(\theta\right)} - \mu \cdot h$$

$$1.15 \text{ m} = \frac{4625.314 \text{ N} \cdot 2.8 \text{ m}}{11000 \text{ N} \cdot \cos\left(5^{\circ}\right)} - 0.49 \cdot 0.065 \text{ m}$$

1.5) Slope of Road from Braking with Front Wheel Reaction Formula 🕝

Evaluate Formula (

Evaluate Formula

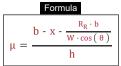
Evaluate Formula

Evaluate Formula 🕝

1.6) Vehicle Weight with All Wheel Brake on Front Wheel Formula [

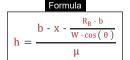
Formula $W = \frac{R_F}{\left(x + \mu \cdot h\right) \cdot \frac{\cos(\theta)}{h}}$

Example with Units
$$10999.9995 \,\text{N} \,=\, \frac{4625.314 \,\text{N}}{\left(\,1.15 \,\text{m} \,+\, 0.49 \cdot 0.065 \,\text{m}\,\,\right) \cdot \frac{\cos\left(\,5^{\circ}\,\,\right)}{2.8 \,\text{m}}}$$


1.7) Wheel Base with All Wheel Braking on Front Wheel Formula

$$b = W \cdot (x + \mu \cdot h) \cdot \frac{\cos(\theta)}{R_F}$$

Example with Units
$$2.8\,\text{m} \,=\, 11000\,\text{N} \,\cdot\, \left(\,\, 1.15\,\text{m} \,+\, 0.49\,\cdot\, 0.065\,\text{m}\,\,\right) \,\cdot\, \frac{\cos\left(\,5^{\circ}\,\,\right)}{4625.314\,\text{N}}$$


2) Effects on Rear Wheel Formulas (

2.1) Friction Coefficient between Wheel and Road Surface with Rear Wheel Brake Formula 🕝 Evaluate Formula

2.2) Height of C.G. from Road Surface with Rear Wheel Brake Formula C

$$h = \frac{b - x - \frac{R_R \cdot b}{W \cdot \cos{(\theta)}}}{\mu} \quad 0.065 \, \text{m} = \frac{2.8 \, \text{m} - 1.15 \, \text{m} - \frac{6332.83 \, \text{N} \cdot 2.8 \, \text{m}}{11000 \, \text{N} \cdot \cos{(5^{\circ})}}}{0.49}$$

Evaluate Formula C

2.3) Horizontal Distance of C.G from Rear Axle with Rear Wheel Brake Formula 🕝

Formula

Formula Example with Units
$$x = b - \mu \cdot h - \frac{R_R \cdot b}{W \cdot \cos(\theta)}$$

$$1.15_m = 2.8_m - 0.49 \cdot 0.065_m - \frac{6332.83_N \cdot 2.8_m}{11000_N \cdot \cos(5_\circ)}$$

2.4) Rear Wheel Reaction with All Wheel Braking Formula [

$$R_{R} = W \cdot (b - x - \mu \cdot h) \cdot \frac{\cos(\theta)}{b}$$

Evaluate Formula (

Example with Units

$$6332.8275 \,\text{N} \,=\, 11000 \,\text{N} \,\cdot\, \left(\, 2.8 \,\text{m} \,\,-\, 1.15 \,\text{m} \,\,-\, 0.49 \,\cdot\, 0.065 \,\text{m}\,\, \right) \,\cdot\, \frac{\cos\left(\, 5\,^{\circ}\,\,\right)}{2.8 \,\text{m}}$$

2.5) Slope of Road from Braking with Rear Wheel Reaction Formula C

Formula

Formula Example with Units
$$\theta = a\cos\left(\frac{R_R}{W \cdot \frac{b \cdot x \cdot \mu \cdot h}{b}}\right) \qquad 4.9997^{\circ} = a\cos\left(\frac{6332.83 \, \text{N}}{11000 \, \text{N} \cdot \frac{2.8 \, \text{m} \cdot 1.15 \, \text{m} \cdot 0.49 \cdot 0.065 \, \text{m}}{2.8 \, \text{m}}}\right)$$

2.6) Vehicle Weight with All Wheel Brake on Rear Wheel Formula C

Evaluate Formula

$$W = \frac{R_R}{\left(b - x - \mu \cdot h\right) \cdot \frac{\cos(\theta)}{b}}$$

Example with Units

$$11000.0044_{N} = \frac{6332.83_{N}}{\left(2.8_{m} - 1.15_{m} - 0.49 \cdot 0.065_{m}\right) \cdot \frac{\cos(5^{\circ})}{2.8_{m}}}$$

2.7) Wheel Base with All Wheel Braking on Rear Wheel Formula 🗂

 $b = \frac{W \cdot \cos(\theta) \cdot (x + \mu \cdot h)}{W \cdot \cos(\theta) \cdot R_{P}}$

Example with Units

$$2.8_{m} = \frac{11000_{N} \cdot \cos(5^{\circ}) \cdot (1.15_{m} + 0.49 \cdot 0.065_{m})}{11000_{N} \cdot \cos(5^{\circ}) - 6332.83_{N}}$$

3) Vehicle Braking Dynamics Formulas (

3.1) All Wheel Braking Retardation Formula 🕝

Formula

$$a = [g] \cdot (\mu \cdot \cos(\theta) - \sin(\theta))$$

Evaluate Formula

$$3.9323 \,\mathrm{m/s^2} = 9.8066 \,\mathrm{m/s^2} \cdot (0.49 \cdot \cos(5^\circ) - \sin(5^\circ))$$

3.2) Braking Force on Brake Drum on Level Road Formula 🕝

Formula Example with Units
$$F = \frac{W}{g} \cdot f \qquad 7801.0204 \, \text{N} = \frac{11000 \, \text{N}}{9.8 \, \text{m/s}^2} \cdot 6.95 \, \text{m/s}^2$$

Evaluate Formula [

3.3) Braking Torque of Disc Brake Formula

Formula

$$T_{s} = 2 \cdot p \cdot a_{p} \cdot \mu_{p} \cdot R_{m} \cdot n$$

$$0.0547 \,\mathrm{N^*m} = 2 \cdot 8 \,\mathrm{N/m^2} \cdot 0.02 \,\mathrm{m^2} \cdot 0.34 \cdot 0.25 \,\mathrm{m} \cdot 2.01$$

3.4) Braking Torque of Leading Shoe Formula Example with Units

$$T_{l} = \frac{W_{l} \cdot m \cdot \mu f \cdot k}{n_{t} + (\mu f \cdot k)} \qquad 1.2436 \, N^{*}m = \frac{105 \, N \cdot 0.26 \, m \cdot 0.35 \cdot 0.3 \, m}{2.2 \, m + (0.35 \cdot 0.3 \, m)}$$

Evaluate Formula [

3.5) Braking Torque of Trailing Shoe Formula

$$T_{t} = \frac{W_{t} \cdot n_{t} \cdot \mu_{0} \cdot k}{n_{t} \cdot \mu_{0} \cdot k}$$

Example with Units

$$T_{t} = \frac{W_{t} \cdot n_{t} \cdot \mu_{0} \cdot k}{n_{t} \cdot \mu_{0} \cdot k} \qquad 4.4287 \,_{N^{*}m} = \frac{80 \,_{N} \cdot 2.2 \,_{m} \cdot 0.18 \cdot 0.3 \,_{m}}{2.2 \,_{m} \cdot 0.18 \cdot 0.3 \,_{m}}$$

Evaluate Formula 🕝

3.6) Friction Coefficient between Wheel and Road Surface with Retardation Formula 🗂

$$\frac{a}{[g]} + \sin(\theta)$$

Example with Units

$$\mu = \frac{\frac{a}{[g]} + \sin(\theta)}{\cos(\theta)}$$

$$0.4898 = \frac{\frac{3.93 \text{ m/s}^2}{9.8066 \text{m/s}^2} + \sin(5^\circ)}{\cos(5^\circ)}$$

Evaluate Formula [

3.7) Gradient Descend Brake Drum Force Formula 🕝

Formula

$$F = \frac{W}{g} \cdot f + W \cdot \sin(\alpha_{inc})$$

Evaluate Formula (

Example with Units

$$7802.9403\,\text{N} \,=\, \frac{11000\,\text{N}}{9.8\,\text{m/s}^2} \cdot 6.95\,\text{m/s}^2 \,+\, 11000\,\text{N} \,\cdot \text{sin} \, \big(\, 0.01^\circ \, \big)$$

3.8) Ground Speed of Track Laying Vehicle Formula C

Formula
$$V_{g} = \frac{E_{\text{rpm}} \cdot C}{16660 \cdot P}$$

$$V_g = \frac{E_{rpm} \cdot C}{16660 \cdot R_g} \qquad 0.0263 \, \text{m/s} = \frac{5100 \, \text{rev/min} \, \cdot 8.2 \, \text{m}}{16660 \cdot 10}$$

3.9) Mean Lining Pressure of Brake Lining Formula 🕝

Formula

$$mlp = \left(\frac{180}{8 \cdot \pi}\right) \cdot \frac{F \cdot r}{\mu f \cdot r_{BD}^{2} \cdot w \cdot \alpha}$$

Evaluate Formula

Evaluate Formula [

Example with Units

$$2143.1742\,\text{N/m}^2 = \left(\frac{180}{8 \cdot 3.1416}\right) \cdot \frac{7800\,\text{N} \cdot 0.1\,\text{m}}{0.35 \cdot 5.01\,\text{m}^2 \cdot 0.68\,\text{m} \cdot 25^\circ}$$

3.10) Normal Force at Brake Shoe Contact Point Formula C

$$P = \frac{F \cdot r}{8 \cdot \mu f \cdot \alpha}$$

Example with Units

$$P = \frac{F \cdot r}{8 \cdot \mu f \cdot \alpha} \qquad \boxed{638.4387_{N} = \frac{7800_{N} \cdot 0.1_{m}}{8 \cdot 0.35 \cdot 25_{\circ}}}$$

Evaluate Formula C

3.11) Wheel Heat Generation Rate Formula C

Formula

$$H = \frac{F \cdot V}{4}$$

Example with Units $H = \frac{F \cdot V}{4} \mid 87750_{J/s} = \frac{7800 \,\text{N} \cdot 45 \,\text{m/s}}{4}$ Evaluate Formula C

Variables used in list of All Wheel Braking for Racing Car Formulas above

- a Retardation Produced by Braking (Meter per Square Second)
- a_p Area of One Piston per Caliper (Square Meter)
- b Vehicle Wheelbase (Meter)
- C Driving Sprocket Circumference (Meter)
- Erpm Engine RPM (Revolution per Minute)
- f Vehicle Deceleration (Meter per Square Second)
- F Brake Drum Braking Force (Newton)
- g Acceleration due to Gravity (Meter per Square Second)
- h Height of Center of Gravity (C.G.) of Vehicle (Meter)
- H Heat Generated per Second at Each Wheel (Joule per Second)
- **k** Effective Radius of Normal Force (Meter)
- m Distance of Actuating Force from Horizontal (Meter)
- mlp Mean Lining Pressure (Newton per Square Meter)
- n Number of Caliper Units
- n_t Force of Trailing Shoe Distance from Horizontal (Meter)
- **p** Line Pressure (Newton per Square Meter)
- P Normal Force between Shoe and Drum (Newton)
- r Effective Wheel Radius (Meter)
- r_{BD} Brake Drum Radius (Meter)
- R_F Normal Reaction at the Front Wheel (Newton)
- R_q Overall Gear Reduction
- R_m Mean Radius of Caliper Unit to Disc Axis (Meter)
- R_R Normal Reaction at Rear Wheel (Newton)
- T_I Leading Shoe Braking Torque (Newton Meter)
- T_s Disc Brake Braking Torque (Newton Meter)
- T_t Trailing Shoe Braking Torque (Newton Meter)

Constants, Functions, Measurements used in list of All Wheel Braking for Racing Car Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- constant(s): [g], 9.80665
 Gravitational acceleration on Earth
- Functions: acos, acos(Number)
 The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Functions: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Functions: sin, sin(Angle)
 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Pressure in Newton per Square Meter (N/m²)

 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)

Acceleration Unit Conversion

- Measurement: Power in Joule per Second (J/s)

 Power Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Angular Velocity in Revolution per Minute (rev/min)
 Angular Velocity Unit Conversion

- V Vehicle Speed (Meter per Second)
- V_g Ground Speed of Track Laying Vehicle (Meter per Second)
- W Brake Lining Width (Meter)
- W Vehicle Weight (Newton)
- W_I Leading Shoe Actuating Force (Newton)
- W_t Trailing Shoe Actuating Force (Newton)
- X Horizontal Distance of C.G. from Rear Axle (Meter)
- α Angle between Linings of Brake Shoes (Degree)
- α_{inc} Angle of Inclination of Plane to Horizontal (Degree)
- θ Inclination Angle of Road (Degree)
- µ Friction Coefficient Between Wheels and Ground
- μ₀ Friction Coefficient for Smooth Road
- μ_p Friction Coefficient of Pad Material
- µf Friction Coefficient between Drum and Shoe

Measurement: Torque in Newton Meter (N*m)
 Torque Unit Conversion

Download other Important Weight Transfer during Braking PDFs

- Important All Wheel Braking for Racing
 Important Rear Wheel Braking for Racing Car Formulas
- Important Front Wheel Braking for Racing Cars Formulas

Try our Unique Visual Calculators

- M Percentage decrease
- HCF of three numbers

Multiply fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:26:16 AM UTC