Important Rear Wheel Braking for Racing Car Formulas PDF

Formulas Examples with Units

List of 19

Important Rear Wheel Braking for Racing Car Formulas

1) Effects on Front Wheel (FW) Formulas 🕝

1.1) Friction Coefficient between Wheel and Road Surface on Front Wheel Formula

Evaluate Formula 🕝

$$\mu_{FW} = \frac{W \cdot (b - x) \cdot \frac{\cos(\theta)}{R_F} - b}{h}$$

Example with Units

$$0.456 = \frac{13000 \,\mathrm{N} \cdot \left(2.7 \,\mathrm{m} - 1.2 \,\mathrm{m}\right) \cdot \frac{\cos(10^{\circ})}{7103 \,\mathrm{N}} - 2.7 \,\mathrm{m}}{0.007919 \,\mathrm{m}}$$

1.2) Height of C.G. from Road Surface on Front Wheel Formula 🕝

ormula

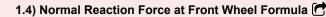
Evaluate Formula

$$h = \frac{W \cdot (b - x) \cdot \frac{\cos(\theta)}{R_F} - b}{\mu_{FW}}$$

Example with Units

$$0.0079_{\,\mathrm{m}} \, = \frac{13000_{\,\mathrm{N}} \, \cdot \left(\,2.7_{\,\mathrm{m}} \, - \,1.2_{\,\mathrm{m}}\,\right) \cdot \frac{\cos\left(\,10^{\,\circ}\,\right)}{7103_{\,\mathrm{N}}} \, - \,2.7_{\,\mathrm{m}}}{0.456032}$$

1.3) Horizontal Distance of C.G from Rear Axle on Front Wheel Formula


Fv

Evaluate Formula

$$x = (b - \mu_{FW} \cdot h) - R_F \cdot \frac{b - \mu_{FW} \cdot h}{W \cdot \cos(\theta)}$$

Example with Units

$$1.2004_{\,\mathrm{m}} \, = \, \left(\, 2.7_{\,\mathrm{m}} \, - \, 0.456032 \cdot 0.007919_{\,\mathrm{m}} \, \right) \, - \, 7103_{\,\mathrm{N}} \, \cdot \, \frac{2.7_{\,\mathrm{m}} \, - \, 0.456032 \cdot 0.007919_{\,\mathrm{m}}}{13000_{\,\mathrm{N}} \cdot \cos \left(\, 10^{\circ} \, \right)}$$

 $R_{F} = W \cdot (b - x) \cdot \frac{\cos(\theta)}{b + u_{F} \cdot b}$

Example with Units

$$7103_{\text{N}} = 13000_{\text{N}} \cdot \left(2.7_{\text{m}} - 1.2_{\text{m}}\right) \cdot \frac{\cos(10^{\circ})}{2.7_{\text{m}} + 0.456032 \cdot 0.007919_{\text{m}}}$$

1.5) Slope of Road on Front Wheel Formula (

Formula

Example with Units

 $\theta = a\cos\left(\frac{R_F}{W \cdot \frac{b \cdot x}{b + \mu_{max} \cdot b}}\right) \left[10^{\circ} = a\cos\left(\frac{7103 \text{ N}}{13000 \text{ N} \cdot \frac{2.7 \text{ m} \cdot 1.2 \text{ m}}{2.7 \text{ m} + 0.456032 \cdot 0.007919 \text{ m}}}\right) \right]$

Evaluate Formula (

Evaluate Formula [

Evaluate Formula (

Evaluate Formula

Evaluate Formula

1.6) Weight of Vehicle on Front Wheel Formula C

Formula

Example with Units

 $W = \frac{R_F}{\left(\;b \; - \;x\;\right) \cdot \frac{\cos\left(\;\theta\;\right)}{b \; + \; \mu_{FW} \; \cdot \; h}} \; \left| \;\; \right| \; 13000 \, \text{N} \; = \; \frac{7103 \, \text{N}}{\left(\;2.7 \, \text{m} \; - \;1.2 \, \text{m}\;\right) \cdot \frac{\cos\left(\;10^{\circ}\;\right)}{2.7 \, \text{m} \; + \;0.456032 \; \cdot \;0.007919 \, \text{m}}}$

1.7) Wheel Base on Front Wheel Formula 🕝

 $b = \frac{R_F \cdot \mu_{FW} \cdot h + W \cdot x \cdot \cos(\theta)}{W \cdot \cos(\theta) \cdot R_{-}}$

Example with Units

$$2.7\,{}_{m}\,=\,\frac{7103\,{}_{N}\,\cdot 0.456032\cdot 0.007919\,{}_{m}\,+\,13000\,{}_{N}\,\cdot 1.2\,{}_{m}\,\cdot \cos \left(\,10\,{}^{\circ}\,\right)}{13000\,{}_{N}\,\cdot \cos \left(\,10\,{}^{\circ}\,\right)\,-\,7103\,{}_{N}}$$

2) Effects on Rear Wheel (RW) Formulas 🗂

2.1) Breaking Retardation on Rear Wheel Formula C

 $a = [g] \cdot \left(\frac{\mu_{RW} \cdot (b - x) \cdot \cos(\theta)}{b + \mu_{RW} \cdot h} - \sin(\theta) \right)$

$$0.8688\,\text{m/s}^2 \,=\, 9.8066\,\text{m/s}^2 \,\cdot \left(\, \frac{0.48 \cdot \left(\, 2.7\,\text{m} \, - \, 1.2\,\text{m} \, \, \right) \cdot \cos \left(\, 10^{\,\circ} \, \, \right)}{2.7\,\text{m} \, + \, 0.48 \cdot 0.007919\,\text{m}} \, - \sin \left(\, 10^{\,\circ} \, \, \right) \, \right)$$

2.2) Friction Coefficient between Wheel and Road Surface on Rear Wheel Formula 🕝

$$\mu_{RW} = \frac{R_R \cdot b \cdot W \cdot x \cdot \cos(\theta)}{h \cdot (W \cdot \cos(\theta) - R_R)}$$

$$0.48 = \frac{5700 \,\mathrm{n} \cdot 2.7 \,\mathrm{m} - 13000 \,\mathrm{n} \cdot 1.2 \,\mathrm{m} \cdot \cos\left(\,10^{\,\circ}\,\right)}{0.007919 \,\mathrm{m} \cdot \left(\,13000 \,\mathrm{n} \cdot \cos\left(\,10^{\,\circ}\,\right) - 5700 \,\mathrm{n}\,\right)}$$

2.3) Friction Coefficient using Retardation on Rear Wheel Formula 🕝

$$\mu_{RW} = \frac{\left(\frac{a}{[g]} + \sin(\theta)\right) \cdot b}{\left(b - x\right) \cdot \cos(\theta) \cdot \left(\left(\frac{a}{[g]} + \sin(\theta)\right) \cdot h\right)}$$

Example with Units

$$0.48 = \frac{\left(\frac{0.86885 \text{ m/s}^2}{9.8066 \text{m/s}^2} + \sin(10^\circ)\right) \cdot 2.7 \text{ m}}{\left(2.7 \text{ m} - 1.2 \text{ m}\right) \cdot \cos(10^\circ) - \left(\left(\frac{0.86885 \text{ m/s}^2}{9.8066 \text{m/s}^2} + \sin(10^\circ)\right) \cdot 0.007919 \text{ m}\right)}$$

2.4) Height of C.G. from Road Surface on Rear Wheel Formula C

Evaluate Formula C

 $h = \frac{R_R \cdot b - W \cdot x \cdot \cos(\theta)}{\mu_{RW} \cdot (W \cdot \cos(\theta) - R_R)}$

Example with Units

$$0.0079_{\,\mathrm{m}} \, = \frac{5700_{\,\mathrm{N}} \, \cdot 2.7_{\,\mathrm{m}} \, - \, 13000_{\,\mathrm{N}} \, \cdot 1.2_{\,\mathrm{m}} \, \cdot \cos\left(\,10^{\,\circ}\,\,\right)}{0.48 \cdot \left(\,13000_{\,\mathrm{N}} \cdot \cos\left(\,10^{\,\circ}\,\,\right) \, - \, 5700_{\,\mathrm{N}}\,\,\right)}$$

2.5) Height of C.G. using Retardation on Rear Wheel Formula 🕝

Formula Example with Units

2.6) Horizontal Distance of C.G. from Rear Axle on Rear Wheel Formula

 $x = R_R \cdot \frac{b + \mu_{RW} \cdot h}{W \cdot \cos(\theta)} - \mu_{RW} \cdot h$

$$1.2\,{}_{m}\,=\,5700\,{}_{N}\,\cdot\frac{2.7\,{}_{m}\,+\,0.48\cdot0.007919\,{}_{m}}{13000\,{}_{N}\,\cdot\cos\left(\,10^{\circ}\,\right)}\,\cdot\,0.48\cdot0.007919\,{}_{m}$$

2.7) Horizontal Distance of C.G. using Retardation on Rear Wheel Formula 🕝

Evaluate Formula

EvaluateFormula 🦳

Formula

$$x = b - \left(\left(\frac{a}{[g]} + \sin(\theta) \right) \cdot \frac{b + \mu_{RW} \cdot h}{\mu_{RW} \cdot \cos(\theta)} \right)$$

$$1.2_{\text{m}} = 2.7_{\text{m}} - \left(\left(\frac{0.86885_{\text{m/s}^2}}{9.8066_{\text{m/s}^2}} + \sin(10^{\circ}) \right) \cdot \frac{2.7_{\text{m}} + 0.48 \cdot 0.007919_{\text{m}}}{0.48 \cdot \cos(10^{\circ})} \right)$$

2.8) Normal Reaction Force at Rear Wheel Formula C

Evaluate Formula [

$$R_{R} = W \cdot \left(\, x \, + \, \mu_{RW} \cdot h \, \right) \cdot \frac{\cos \left(\, \theta \, \right)}{b \, + \, \mu_{RW} \cdot h}$$

Example with Units

$$5699.9994_{\text{N}} = 13000_{\text{N}} \cdot \left(1.2_{\text{m}} + 0.48 \cdot 0.007919_{\text{m}} \right) \cdot \frac{\cos \left(10^{\circ} \right)}{2.7_{\text{m}} + 0.48 \cdot 0.007919_{\text{m}}}$$

2.9) Slope of Road on Rear Wheel Formula 🗂

Evaluate Formula (

Formula

$$\theta = a\cos\left(\frac{R_R}{W \cdot \frac{x + \mu_{RW} \cdot h}{V}}\right)$$

Example with Units

2.10) Weight of Vehicle on Rear Wheel Formula 🕝

Formula

$$W = \frac{R_R}{\left(x + \mu_{RW} \cdot h\right) \cdot \frac{\cos(\theta)}{b + \mu_{RW} \cdot h}}$$

Example with Units

$$13000.0013 \text{N} = \frac{5700 \text{N}}{\left(1.2 \text{m} + 0.48 \cdot 0.007919 \text{m}\right) \cdot \frac{\cos(10^{\circ})}{2.7 \text{m} + 0.48 \cdot 0.007919 \text{m}}}$$

2.11) Wheel Base of Vehicle using Retardation on Rear Wheel Formula

Evaluate Formula

$$b = \frac{\left(\frac{a}{|g|} + \sin(\theta)\right) \cdot \mu_{RW} \cdot h + \mu_{RW} \cdot x \cdot \cos(\theta)}{\mu_{RW} \cdot \cos(\theta) \cdot \left(\frac{a}{|g|} + \sin(\theta)\right)}$$

Example with Units

$$2.7 \,\mathrm{m} \,= \frac{\left(\frac{0.86885 \,\mathrm{m/s^2}}{9.8066 \,\mathrm{m/s^2}} + \sin\left(10^{\circ}\right)\right) \cdot 0.48 \cdot 0.007919 \,\mathrm{m} \,+ 0.48 \cdot 1.2 \,\mathrm{m} \cdot \cos\left(10^{\circ}\right)}{0.48 \cdot \cos\left(10^{\circ}\right) - \left(\frac{0.86885 \,\mathrm{m/s^2}}{9.8066 \,\mathrm{m/s^2}} + \sin\left(10^{\circ}\right)\right)}$$

2.12) Wheel Base on Rear Wheel Formula

Formula

Evaluate Formula

Evaluate Formula (

$$b = \left(W \cdot \left(x + \mu_{RW} \cdot h\right) \cdot \frac{\cos\left(\theta\right)}{R_R}\right) - \mu_{RW} \cdot h$$

Example with Units

$$2.7_{\,m} \, = \left(\, 13000_{\,N} \, \cdot \left(\, 1.2_{\,m} \, + \, 0.48 \cdot 0.007919_{\,m} \, \right) \cdot \frac{\cos \left(\, 10^{\circ} \, \right)}{5700_{\,N}} \right) - \, 0.48 \cdot 0.007919_{\,m}$$

Variables used in list of Rear Wheel Braking for Racing Car Formulas above

- a Braking Retardation (Meter per Square Second)
- **b** Vehicle Wheelbase (*Meter*)
- **h** Height of C.G. of Vehicle (Meter)
- R_F Normal Reaction at Front Wheel (Newton)
- R_R Normal Reaction at Rear Wheel (Newton)
- W Vehicle Weight (Newton)
- X Horizontal Distance of C.G. from Rear Axle (Meter)
- **θ** Road Inclination Angle (Degree)
- µ_{FW} Friction Coefficient on Front Wheel
- μ_{RW} Friction Coefficient on Rear Wheel

Constants, Functions, Measurements used in list of Rear Wheel Braking for Racing Car Formulas above

- constant(s): [g], 9.80665
 Gravitational acceleration on Earth
- Functions: acos, acos(Number)
 The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Functions: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Functions: sin, sin(Angle)
 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)
 - Acceleration Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion

Download other Important Weight Transfer during Braking PDFs

- Important All Wheel Braking for Racing
 Important Rear Wheel Braking for Racing Car Formulas
- Important Front Wheel Braking for Racing Cars Formulas

Try our Unique Visual Calculators

• M Percentage share

HCF of two numbers

• Improper fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:25:34 AM UTC