Important Rates for Axle Suspension in Race Car Formulas PDF

Formulas Examples with Units

List of 10

Important Rates for Axle Suspension in Race Car Formulas

1) Rear Track Width given Roll Rate Formula 🕝

Formula

Evaluate Formula [

$$t_{R} = \sqrt{\frac{K_{\Phi} \cdot K_{w} \cdot T_{s}^{2}}{\left(K_{w} \cdot \frac{T_{s}^{2}}{2} - K_{\Phi}\right) \cdot K_{t}}}$$

Example with Units

$$0.6277 \,\mathrm{m} \,=\, \sqrt{\frac{10297.43 \,\mathrm{Nm/rad} \,\cdot\, 30366.46 \,\mathrm{N/m} \,\cdot\, 0.9 \,\mathrm{m}^{\,\,2}}{\left(30366.46 \,\mathrm{N/m} \,\cdot\, \frac{0.9 \,\mathrm{m}^{\,\,2}}{2} \,-\, 10297.43 \,\mathrm{Nm/rad}\,\,\right) \cdot\, 321300 \,\mathrm{N/m}}}$$

2) Rear Track Width given Roll Rate of Suspension with Anti-Roll Bar Formula 🕝

Evaluate Formula

$$t_{R} = \sqrt{\frac{K_{\Phi} \cdot \left(R_{arb} + K_{w} \cdot \frac{\left(T_{s}\right)^{2}}{2}\right)}{\left(R_{arb} + K_{w} \cdot \frac{T_{s}^{2}}{2} - K_{\Phi}\right) \cdot K_{t}}}$$

$$0.4\,\mathrm{m} \,=\, \sqrt{2 \cdot \frac{10297.43\,\mathrm{Nm/rad}\,\cdot \left(\,4881.6\,\mathrm{Nm/rad}\,\,+\,30366.46\,\mathrm{N/m}\,\cdot \frac{\left(\,0.9\,\mathrm{m}\,\,\right)^{\,2}}{2}\,\right)}{\left(\,4881.6\,\mathrm{Nm/rad}\,\,+\,30366.46\,\mathrm{N/m}\,\cdot \frac{0.9\,\mathrm{m}^{\,\,2}}{2}\,-\,10297.43\,\mathrm{Nm/rad}\,\,\right)\cdot\,321300\,\mathrm{N/m}}}$$

3) Roll Rate Formula (

Formula

$$K_{\Phi} = \frac{K_{t} \cdot \frac{t_{R}^{2}}{2} \cdot K_{w} \cdot \frac{T_{s}^{2}}{2}}{K_{t} \cdot \frac{t_{R}^{2}}{2} + K_{w} \cdot \frac{T_{s}^{2}}{2}}$$

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula (

Example with Units

$$8318.3788 \,\text{Nm/rad} \, = \frac{321300 \,\text{N/m} \, \cdot \frac{0.4 \,\text{m}^{\,2}}{2} \cdot 30366.46 \,\text{N/m} \, \cdot \frac{0.9 \,\text{m}^{\,2}}{2}}{321300 \,\text{N/m} \, \cdot \frac{0.4 \,\text{m}^{\,2}}{2} + 30366.46 \,\text{N/m} \, \cdot \frac{0.9 \,\text{m}^{\,2}}{2}}$$

4) Roll Rate with Anti-Roll Bar Formula 🕝

Formula

$$K_{\Phi} = \frac{K_{t} \cdot \frac{t_{R}^{2}}{2} \cdot \left(R_{arb} + K_{w} \cdot \frac{T_{s}^{2}}{2}\right)}{K_{t} \cdot \frac{t_{R}^{2}}{2} + R_{arb} + K_{w} \cdot \frac{T_{s}^{2}}{2}}$$

Example with Units

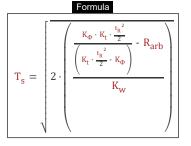
$$10297.4296 \, \text{Nm/rad} \, = \frac{321300 \, \text{N/m} \, \cdot \frac{0.4 \, \text{m}^{2}}{2} \cdot \left(4881.6 \, \text{Nm/rad} \, + \, 30366.46 \, \text{N/m} \, \cdot \frac{0.9 \, \text{m}^{2}}{2}\right)}{321300 \, \text{N/m} \, \cdot \frac{0.4 \, \text{m}^{2}}{2} + \, 4881.6 \, \text{Nm/rad} \, + \, 30366.46 \, \text{N/m} \, \cdot \frac{0.9 \, \text{m}^{2}}{2}}$$

5) Spring Track Width given Roll Rate Formula 🗂

Formula

$$T_{s} = \sqrt{\frac{K_{\Phi} \cdot K_{t} \cdot t_{R}^{2}}{\left(K_{t} \cdot \frac{t_{R}^{2}}{2} - K_{\Phi}\right) \cdot K_{w}}}$$

$$1.0637 \,\mathrm{m} \,=\, \sqrt{\frac{10297.43 \,\mathrm{Nm/rad} \,\cdot\, 321300 \,\mathrm{N/m} \,\cdot\, 0.4 \,\mathrm{m}^{\,\,2}}{\left(321300 \,\mathrm{N/m} \,\cdot\, \frac{0.4 \,\mathrm{m}^{\,\,2}}{2} - 10297.43 \,\mathrm{Nm/rad}\,\right) \cdot\, 30366.46 \,\mathrm{N/m}}}$$


6) Spring Track Width given Roll Rate of Suspension with Anti-Roll Bar Formula 🕝

Evaluate Formula (

Evaluate Formula (

Evaluate Formula C

Example with Units

$$0.9\,\mathrm{m} \,=\, \left(\begin{array}{c} \hline \\ 2 \cdot \left(\begin{array}{c} \hline \\ 10297.43\,\mathrm{Nm/rad} \\ \hline \\ \hline \\ 321300\,\mathrm{N/m} \\ \end{array} \cdot \frac{0.4\,\mathrm{m}^2}{2} - 10297.43\,\mathrm{Nm/rad} \\ \hline \\ 30366.46\,\mathrm{N/m} \\ \end{array}\right) - 4881.6\,\mathrm{Nm/rad} \\ \hline \\ \end{array}\right)$$

7) Tyre Rate given Roll Rate Formula C

$$K_{t} = \frac{K_{\Phi} \cdot \left(K_{w} \cdot \frac{T_{s}^{2}}{2}\right)}{\left(K_{w} \cdot \frac{T_{s}^{2}}{2} - K_{\Phi}\right) \cdot \frac{t_{R}^{2}}{2}}$$

$$791122.8638\,\text{N/m} \,=\, \frac{10297.43\,\text{Nm/rad}\,\cdot \left(\,30366.46\,\text{N/m}\,\cdot \frac{0.9\,\text{m}^{\,\,2}}{2}\,\right)}{\left(\,30366.46\,\text{N/m}\,\cdot \frac{0.9\,\text{m}^{\,\,2}}{2}\,-\,10297.43\,\text{Nm/rad}\,\,\right)\cdot \frac{0.4\,\text{m}^{\,\,2}}{2}}$$

8) Tyre Rate given Roll Rate of Suspension with Anti-Roll Bar Formula 🗂

$$K_{t} = \frac{K_{\Phi} \cdot \left(R_{arb} + K_{w} \cdot \frac{{T_{s}}^{2}}{2}\right)}{\left(R_{arb} + K_{w} \cdot \frac{{T_{s}}^{2}}{2} - K_{\Phi}\right) \cdot \frac{{t_{R}}^{2}}{2}}$$

$$321300.0309\,\text{N/m} \,=\, \frac{10297.43\,\text{Nm/rad}\,\cdot \left(\,4881.6\,\text{Nm/rad}\,\,+\,30366.46\,\text{N/m}\,\cdot\frac{0.9\,\text{m}^{-2}}{2}\,\right)}{\left(\,4881.6\,\text{Nm/rad}\,\,+\,30366.46\,\text{N/m}\,\cdot\frac{0.9\,\text{m}^{-2}}{2}\,-\,10297.43\,\text{Nm/rad}\,\,\right)\cdot\frac{0.4\,\text{m}^{-2}}{2}}$$

9) Vertical Tyre Axle Rate given Roll Rate Formula 🕝

Formula

$$K_{w} = \frac{K_{\Phi} \cdot K_{t} \cdot \frac{t_{R}^{2}}{2}}{K_{t} \cdot \frac{t_{R}^{2}}{2} \cdot K_{\Phi} \cdot \frac{{T_{s}}^{2}}{2}}$$

Evaluate Formula 🕝

Example with Units

$$12291.7611\,\text{N/m} \,=\, \frac{10297.43\,\text{Nm/rad}\,\cdot 321300\,\text{N/m}\,\cdot \frac{0.4\,\text{m}^{\,2}}{2}}{321300\,\text{N/m}\,\cdot \frac{0.4\,\text{m}^{\,2}}{2}\,-\,10297.43\,\text{Nm/rad}\,\cdot \frac{0.9\,\text{m}^{\,2}}{2}}$$

10) Vertical Tyre Axle Rate given Roll Rate of Suspension with Anti-Roll Bar Formula 🕝

Evaluate Formula [

$K_{w} = \frac{\frac{K_{\Phi} \cdot K_{t} \cdot \frac{t_{R}^{2}}{2}}{K_{t} \cdot \frac{t_{R}^{2}}{2} \cdot K_{\Phi}} - R_{arb}}{T_{e}^{2}}$

$$30366.4627 \,\text{N/m} \,=\, \frac{\frac{10297.43 \,\text{Nm/rad} \,\cdot\, 321300 \,\text{N/m} \,\cdot\frac{0.4 \,\text{m}^{\,\,2}}{2}}{321300 \,\text{N/m} \,\cdot\frac{0.4 \,\text{m}^{\,\,2}}{2} \,\cdot\, 10297.43 \,\text{Nm/rad}} \,\cdot\, 4881.6 \,\text{Nm/rad}}{\frac{0.9 \,\text{m}^{\,\,2}}{2}}$$

Variables used in list of Rates for Axle Suspension in Race Car Formulas above

- K_t Tyre Vertical Rate (Newton per Meter)
- K_w Wheel Centre Rate (Newton per Meter)
- K_Φ Roll Rate (Newton Meter per Radian)
- R_{arb} Roll Rate of Anti-Roll Bar (Newton Meter per Radian)
- t_R Rear Track Width (Meter)
- T_s Spring Track Width (Meter)

Constants, Functions, Measurements used in list of Rates for Axle Suspension in Race Car Formulas above

- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Surface Tension in Newton per Meter (N/m)
 Surface Tension Unit Conversion
- Measurement: Torsion Constant in Newton Meter per Radian (Nm/rad)
 Torsion Constant Unit Conversion

Download other Important Race Car Vehicle Dynamics PDFs

- Important Rates for Axle Suspension in
 Important Wheel Centre Rates for
 Race Car Formulas
 Independent Suspension Formulas
- Important Ride Rate and Ride
 Frequency for Race Cars Formulas (*)

Try our Unique Visual Calculators

• M Percentage error

• E LCM of three numbers

• 🜆 Subtract fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:24:56 AM UTC