Important Forces and Loads on Joint Formulas PDF

Formulas Examples with Units

List of 11

Important Forces and Loads on Joint **Formulas**

Evaluate Formula

Evaluate Formula

Evaluate Formula (

Evaluate Formula

Evaluate Formula 🕝

Evaluate Formula

1) Force on Cotter given Shear Stress in Cotter Formula [7]

Example with Units

 $L = 2 \cdot t_{c} \cdot b \cdot \tau_{co} \quad \boxed{ 50000.784 \, \text{N} = 2 \cdot 21.478 \, \text{mm} \cdot 48.5 \, \text{mm} \cdot 24 \, \text{N/mm}^{2}}$

2) Load Taken by Cotter Joint Rod given Tensile Stress in Rod Formula 🕝

Example with Units

 $L = \frac{\pi \cdot d^2 \cdot \sigma t_{rod}}{4} \left[\int 50000.61 \, \text{N} \right] = \frac{3.1416 \cdot 35.6827 \, \text{mm}^2 \cdot 50 \, \text{N/mm}^2}{4}$

3) Load Taken by Socket of Cotter Joint given Compressive Stress Formula 🕝

 $L = \sigma_{\text{CSO}} \cdot \left(\, d_4 - d_2 \, \right) \cdot t_c \, \left| \, \, \right| \, \, 50000.784 \, \text{N} \, = \, 58.20 \, \text{N/mm}^2 \, \cdot \left(\, 80 \, \text{mm} \, - \, 40 \, \text{mm} \, \, \right) \cdot 21.478 \, \text{mm}$

4) Load Taken by Socket of Cotter Joint given Shear Stress in Socket Formula 🕝

Example with Units

 $L = 2 \cdot \left(\, d_4 - d_2 \, \right) \cdot c \cdot \tau_{SO} \, \left| \, \, \right| \, \, 50000 \, \text{N} \, = 2 \cdot \left(\, \overline{80 \, \text{mm} \, - 40 \, \text{mm} \, } \, \right) \cdot 25.0 \, \text{mm} \, \cdot 25 \, \text{N/mm}^2$

5) Load Taken by Socket of Cotter Joint given Tensile Stress in Socket Formula 🕝

 $L = \sigma_{t} so \cdot \left(\frac{\pi}{4} \cdot \left(d_{1}^{2} - d_{2}^{2}\right) - t_{c} \cdot \left(d_{1} - d_{2}\right)\right)$

Example with Units

 $50000.8227 \, \text{N} \, = \, 68.224 \, \text{N/mm}^2 \, \cdot \left(\frac{3.1416}{4} \cdot \left(\, 54 \, \text{mm}^{\, 2} - 40 \, \text{mm}^{\, 2} \right) - \, 21.478 \, \text{mm} \, \cdot \left(\, 54 \, \text{mm} \, - \, 40 \, \text{mm} \, \right) \, \right)$

6) Load Taken by Spigot of Cotter Joint given Compressive Stress in Spigot Considering Crushing Failure Formula C

7) Load Taken by Spigot of Cotter Joint given Shear Stress in Spigot Formula 🕝

Example with Units

Evaluate Formula (

 $L = 2 \cdot L_a \cdot d_2 \cdot \tau_{sp} \ \ \, \bigg| \ \ \, \bigg| \ \, 50000.48 \, \text{N} \ \, = 2 \cdot 23.5 \, \text{mm} \, \cdot 40 \, \text{mm} \, \cdot \, 26.596 \, \text{N/mm}^2$

8) Maximum Load taken by Cotter Joint given Spigot Diameter, Thickness and Stress Formula

Formula

Evaluate Formula (

 $L = \left(\frac{\pi}{4} \cdot d_2^2 - d_2 \cdot t_c\right) \cdot \sigma_t sp$

Example with Units

$$50000.8885 \,\text{N} = \left(\frac{3.1416}{4} \cdot 40 \,\text{mm}^{2} - 40 \,\text{mm} \cdot 21.478 \,\text{mm}\right) \cdot 125.783 \,\text{N/mm}^{2}$$

9) Permissible Shear Stress for Cotter Formula [7]

Formula

Example with Units

Evaluate Formula (

 $| 719988.7106 \, \text{N/m}^2 = \frac{1500 \, \text{N}}{2 \cdot 48.5 \, \text{mm} \cdot 21.478 \, \text{mm}}$

10) Permissible Shear Stress for Spigot Formula 🕝

Formula

Example with Units

Evaluate Formula (

 $\tau_{\rm p} = \frac{\rm P}{\rm 2 \cdot a \cdot d_{\rm ex}} \left[-\frac{\rm 1500 \, N}{\rm 957854.4061 \, N/m^2} \right] = \frac{\rm 1500 \, N}{\rm 2 \cdot 17.4 \, mm \, \cdot 45 \, mm}$

11) Tensile Stress in Spigot Formula 🕝

Evaluate Formula (

 $\sigma_{t} = \frac{P}{\left(\frac{\pi}{4} \cdot d_{ex}^{2}\right) - \left(d_{ex} \cdot t_{c}\right)}$

Example with Units

$$2.4041 \,\mathrm{N/mm^2} = \frac{1500 \,\mathrm{N}}{\left(\frac{3.1416}{4} \cdot 45 \,\mathrm{mm}^2\right) - \left(45 \,\mathrm{mm} \cdot 21.478 \,\mathrm{mm}\right)}$$

Variables used in list of Forces and Loads on Joint Formulas above

- a Spigot Distance (Millimeter)
- b Mean Width of Cotter (Millimeter)
- C Axial Distance From Slot to End of Socket Collar (Millimeter)
- d Diameter of Rod of Cotter Joint (Millimeter)
- d₁ Outside Diameter of Socket (Millimeter)
- d₂ Diameter of Spigot (Millimeter)
- d₄ Diameter of Socket Collar (Millimeter)
- d_{ex} External Diameter of Spigot (Millimeter)
- L Load on Cotter Joint (Newton)
- L_a Gap between End of Slot to End of Spigot (Millimeter)
- P Tensile Force on Rods (Newton)
- t_c Thickness of Cotter (Millimeter)
- σ_{c1} Compressive Stress in Spigot (Newton per Square Millimeter)
- σ_{cso} Compressive Stress In Socket (Newton per Square Millimeter)
- σ_t Tensile Stress (Newton per Square Millimeter)
- σ_tso Tensile Stress In Socket (Newton per Square Millimeter)
- σ_tsp Tensile Stress In Spigot (Newton per Square Millimeter)
- σt_{rod} Tensile Stress in Cotter Joint Rod (Newton per Square Millimeter)
- T_{CO} Shear Stress in Cotter (Newton per Square Millimeter)
- T_{SO} Shear Stress in Socket (Newton per Square Millimeter)
- T_{sp} Shear Stress in Spigot (Newton per Square Millimeter)
- τ_p Permissible Shear Stress (Newton per Square Meter)

Constants, Functions, Measurements used in list of Forces and Loads on Joint Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Pressure in Newton per Square Meter (N/m²)
 Pressure Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)
 Stress Unit Conversion

Download other Important Design of Cotter Joint PDFs

- Important Forces and Loads on Joint
 Important Strength and Stress Formulas (
 - Formulas
- Important Joint Geometry and **Dimensions Formulas**

Try our Unique Visual Calculators

- Percentage change
- Karaman LCM of two numbers

Proper fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:18:08 AM UTC