Wichtig Design der parabolischen Sandkammer **Formeln PDF**

Formeln **Beispiele** mit Einheiten

Liste von 41

Wichtig Design der parabolischen Sandkammer Formeln

Formel auswerten

Formel auswerten

Formel auswerten (

Formel auswerten 🕝

1) Parabolische Kornkammer Formeln

1.1) Druckverlust bei kritischer Geschwindigkeit Formel 🕝

Formel

Beispiel mit Einheiten $h_f = 0.1 \cdot \left(\frac{\left(V_c \right)^2}{2 \cdot g} \right) \left| \quad 0.1306 \, \text{m} \right. = 0.1 \cdot \left(\frac{\left(\ 5.06 \, \text{m/s} \ \right)^2}{2 \cdot 9.8 \, \text{m/s}^2} \right)$

1.2) Fläche des Parabolischen Kanals bei gegebener Breite des Parabolischen Kanals Formel

Beispiel mit Einheiten

1.3) Gesamtenergie am kritischen Punkt Formel

Formel

Beispiel mit Einheiten $E_{c} = \left(d_{c} + \left(\frac{\left(V_{c} \right)^{2}}{2 \cdot g} \right) + h_{f} \right) \left| \right| \left[4.0563 \, \text{m} = \left(2.62 \, \text{m} + \left(\frac{\left(5.06 \, \text{m/s} \right)^{2}}{2 \cdot 9.8 \, \text{m/s}^{2}} \right) + 0.130 \, \text{m} \right) \right|$

1.4) Konstant gegebener Abfluss für rechteckigen Kanalabschnitt Formel 🗂

Beispiel mit Einheiten

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten [

Formel auswerten

Formel auswerten

$$E_{c} = \left(d_{c} + \left(\frac{\left(V_{c}\right)^{2}}{2 \cdot g}\right) + \left(0.1 \cdot \left(\frac{\left(V_{c}\right)^{2}}{2 \cdot g}\right)\right)\right)$$

Beispiel mit Einheiten

$$4.0569 \,\mathrm{m} \,= \left(2.62 \,\mathrm{m} \,+ \left(\frac{\left(5.06 \,\mathrm{m/s}\,\right)^2}{2 \cdot 9.8 \,\mathrm{m/s^2}}\right) + \left(0.1 \cdot \left(\frac{\left(5.06 \,\mathrm{m/s}\,\right)^2}{2 \cdot 9.8 \,\mathrm{m/s^2}}\right)\right)\right)$$

1.6) Strömungsbereich des Rachens bei Entlastung Formel 🕝

Beispiel mit Einheiten $F_{area} = \frac{Q_e}{V_c}$ $7.8696 \,\mathrm{m^2} = \frac{39.82 \,\mathrm{m^3/s}}{5.06 \,\mathrm{m/s}}$

1.7) Kritische Tiefe Formeln

1.7.1) Kritische Tiefe bei Entladung durch die Kontrollsektion Formel Beispiel mit Einheiten

Formel

 $d_{c} = \left(\frac{Q_{e}}{W_{t} \cdot V_{c}}\right) \left[2.6232 \,\mathrm{m} = \left(\frac{39.82 \,\mathrm{m}^{3}/\mathrm{s}}{3 \,\mathrm{m} \cdot 5.06 \,\mathrm{m/s}}\right) \right]$

1.7.2) Kritische Tiefe bei gegebener Tiefe des parabolischen Kanals Formel 🕝 Beispiel mit Einheiten

 $\boxed{ d_{c} = \left(\frac{d}{1.55} \right) } \boxed{ 2.6065 \, m} = \left(\frac{4.04 \, m}{1.55} \right)$

1.7.3) Kritische Tiefe bei maximaler Entladung Formel 🕝

Formel

 $d_{c} = \left(\frac{Q_{p}}{W_{t} \cdot V_{c}}\right) \qquad 2.6199_{m} = \left(\frac{39.77 \, \text{m}^{3}/\text{s}}{3 \, \text{m} \cdot 5.06 \, \text{m/s}}\right)$

1.7.4) Kritische Tiefe bei verschiedenen Entladungen Formel 🗁

Formel

Beispiel mit Einheiten

1.7.5) Kritische Tiefe im Kontrollabschnitt Formel

 $d_{c} = \left(\frac{\left(V_{c}\right)^{2}}{g}\right) \left[2.6126_{m} = \left(\frac{\left(5.06_{m/s}\right)^{2}}{9.8_{m/s^{2}}}\right) \right]$

Beispiel mit Einheiten

Formel auswerten

Formel auswerten [

Formel auswerten (

Formel auswerten

Formel auswerten 🕝

1.8) Kritische Geschwindigkeit Formeln 🕝

- 1.8.1) Kritische Geschwindigkeit bei Druckverlust Formel 🕝

Formel
$$\mathbf{V_c} = \left(\frac{\mathbf{h_f} \cdot 2 \cdot \mathbf{g}}{0.1}\right)^{\frac{1}{2}}$$

Formel Beispiel mit Einheiten
$$V_c = \left(\frac{h_f \cdot 2 \cdot g}{0.1}\right)^{\frac{1}{2}} \\ 5.0478 \, \text{m/s} = \left(\frac{0.130 \, \text{m} \cdot 2 \cdot 9.8 \, \text{m/s}^2}{0.1}\right)^{\frac{1}{2}}$$

1.8.2) Kritische Geschwindigkeit bei Entladung Formel

1.8.3) Kritische Geschwindigkeit bei Entladung durch den Kontrollabschnitt Formel 🕝

Formel Beispiel mit Einheiten
$$V_c = \left(\frac{Q_e}{W_t \cdot d_c}\right) \boxed{5.0662 \, \text{m/s} \, = \left(\frac{39.82 \, \text{m}^3/\text{s}}{3 \, \text{m} \cdot 2.62 \, \text{m}}\right)}$$

1.8.4) Kritische Geschwindigkeit bei gegebener Gesamtenergie am kritischen Punkt Formel 🕝 Formel auswerten

 $V_{c} = \sqrt{2 \cdot g \cdot \left(E_{c} - \left(d_{c} + h_{f}\right)\right)}$

Beispiel mit Einheiten
$$5.0478 \, \text{m/s} \, = \, \sqrt{2 \cdot 9.8 \, \text{m/s}^2 \, \cdot \left(\, 4.05 \, \text{m} \, - \left(\, 2.62 \, \text{m} \, + \, 0.130 \, \text{m} \, \, \right) \, \right) }$$

1.8.5) Kritische Geschwindigkeit bei gegebener Schnitttiefe Formel

Formel Beispiel mit Einheiten
$$V_c = \sqrt{\frac{d \cdot g}{1.55}} \qquad 5.054 \, \text{m/s} = \sqrt{\frac{4.04 \, \text{m} \cdot 9.8 \, \text{m/s}^2}{1.55}}$$

Formel
$$V_{c} = \sqrt{d_{c} \cdot g}$$

Beispiel mit Einheiten

Formel auswerten

$$V_c = \sqrt{d_c \cdot g}$$
 5.0671 m/s = $\sqrt{2.62 \, \text{m} \cdot 9.8 \, \text{m/s}^2}$

1.8.7) Kritische Geschwindigkeit bei maximaler Entladung Formel 🕝

Formel

Formel auswerten

$$V_{c} = \left(\frac{Q_{p}}{W_{t} \cdot d_{c}}\right)$$
 5.0598 m/s = $\left(\frac{39.77 \, \text{m}^{3}/\text{s}}{3 \, \text{m} \cdot 2.62 \, \text{m}}\right)$

1.9) Tiefe des Kanals Formeln 🦳

1.9.1) Tiefe bei kritischer Geschwindigkeit Formel 🕝

Formel

1.9.2) Tiefe des parabolischen Kanals bei gegebener Breite des parabolischen Kanals Formel

Formel Beispiel mit Einheiten
$$d_p = \frac{1.5 \cdot A_{filter}}{w} \qquad 57.7367 \, \text{m} = \frac{1.5 \cdot 50.0 \, \text{m}^2}{1.299 \, \text{m}}$$

Formel auswerten

Formel auswerten

1.9.3) Tiefe des parabolischen Kanals bei gegebener kritischer Tiefe Formel

Formel auswerten

1.9.4) Tiefe gegebener Abfluss für rechteckigen Kanalabschnitt Formel C

Formel Beispiel mit Einheiten
$$d = \frac{Q_e}{x_o} \qquad 4.0402 \, \text{m} = \frac{39.82 \, \text{m}^3/\text{s}}{9.856}$$

Formel auswerten [

1.10) Entladung im Kanal Formeln C

1.10.1) Abfluss durch Parshall Flume mit gegebenem Abflusskoeffizienten Formel 🕝

Formel auswerten

 $Q_e = c \cdot (d)^{C_D}$ $10.0594 \, m^3/s = 6.9 \cdot (4.04 \, m)^{0.27}$

1.10.2) Abflusskoeffizient bei bekanntem Abfluss Formel [

Beispiel mit Einheiten

Formel auswerten 🕝

$$C_D = -\log\left(\frac{Q_{th}}{c}, d\right)$$

 $C_D = -\log\left(\frac{Q_{th}}{c}, d\right) \left| \quad 0.2711 = -\log\left(\frac{0.04 \, \text{m}^3/\text{s}}{6.9}, 4.04 \, \text{m}\right) \right|$

1.10.3) Entladung bei gegebenem Durchflussbereich des Rachens Formel 🦵

Beispiel mit Einheiten $Q_e = F_{area} \cdot V_c$ 39.7716 m³/s = 7.86 m² · 5.06 m/s

1.10.4) Entladung bei kritischer Tiefe Formel

Formel auswerten

Formel

Pormel Beispiel mit Einheiten
$$Q_{e} = \sqrt{\left(\left(d_{c}\right)^{3}\right) \cdot g \cdot \left(W_{t}\right)^{2}}$$

$$39.8278 \, \text{m}^{3}/\text{s} = \sqrt{\left(\left(2.62 \, \text{m}\right)^{3}\right) \cdot 9.8 \, \text{m}/\text{s}^{2} \cdot \left(3 \, \text{m}\right)^{2}}$$

Beispiel mit Einheiten

1.10.5) Entladung durch die Kontrollsektion Formel

Formel

Beispiel mit Einheiten

Formel auswerten

$$Q_{e} = W_{t} \cdot V_{c} \cdot d_{c}$$

 $Q_e = W_t \cdot V_c \cdot d_c$ 39.7716 m³/s = 3 m · 5.06 m/s · 2.62 m

1.10.6) Entladung für rechteckigen Kanalabschnitt Formel

Formel

Beispiel mit Einheiten

Formel auswerten

$$Q_{e} = A_{cs} \cdot \left(R^{\frac{2}{3}}\right) \cdot \frac{i^{\frac{1}{2}}}{n}$$

 $Q_{e} = A_{cs} \cdot \left(R^{\frac{2}{3}}\right) \cdot \frac{1}{n} + \frac{1}{2} \left[46.2992 \, \text{m}^{3}/\text{s} = 3.5 \, \text{m}^{2} \cdot \left(2.000 \, \text{m}^{\frac{2}{3}}\right) \cdot \frac{0.01^{\frac{1}{2}}}{0.012} \right]$

1.10.7) Maximaler Ausfluss bei gegebener Halsbreite Formel 🕝

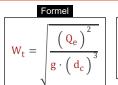
Formel auswerten

$$Q_{p} = W_{t} \cdot V_{c} \cdot d_{c}$$

Formel Beispiel mit Einheiten $Q_p = W_t \cdot V_c \cdot d_c \hspace{0.2in} \boxed{ 39.7716 \, \text{m}^3/\text{s} \hspace{0.2in} = 3 \, \text{m} \hspace{0.2in} \cdot 5.06 \, \text{m/s} \hspace{0.2in} \cdot 2.62 \, \text{m} }$

1.11) Breite des Kanals Formeln

1.11.1) Breite der Kehle bei Entladung durch den Kontrollabschnitt Formel


Beispiel mit Einheiten

Formel auswerten

 $W_t = \left(\frac{Q_e}{d_s \cdot V_s}\right)$ 3.0037 m = $\left(\frac{39.82 \,\mathrm{m}^3/\mathrm{s}}{2.62 \,\mathrm{m} \cdot 5.06 \,\mathrm{m/s}}\right)$

1.11.2) Breite der Kehle bei kritischer Tiefe Formel 🕝

$$W_{t} = \sqrt{\frac{\left(Q_{e}\right)^{2}}{g \cdot \left(d_{c}\right)^{3}}} \qquad 2.9994 \, \text{m} = \sqrt{\frac{\left(39.82 \, \text{m}^{3}/\text{s}\right)^{2}}{9.8 \, \text{m/s}^{2} \cdot \left(2.62 \, \text{m}\right)^{3}}}$$

Formel auswerten

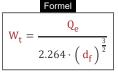
1.11.3) Breite des Parabolkanals Formel 🕝

Formel Beispiel mit Einheiten
$$w = \frac{1.5 \cdot A_{cs}}{d}$$

$$1.2995 \text{ m} = \frac{1.5 \cdot 3.5 \text{ m}^2}{4.04 \text{ m}}$$

Formel auswerten

1.11.4) Halsbreite bei maximaler Entladung Formel


$$W_{t} = \left(\frac{Q_{p}}{d_{c} \cdot V_{c}}\right)$$

Formel auswerten

2) Parshall Flume Formeln (

2.1) Breite der Kehle bei Entlastung Formel

Formel auswerten []

2.2) Breite des Parshall Flume bei gegebener Tiefe des Parshall Flume Formel 🕝

Formel Beispiel mit Einheiten
$$w = \sqrt{\frac{d}{c}} \qquad 0.7652 \, \text{m} = \sqrt{\frac{4.04 \, \text{m}}{6.9}}$$

Formel auswerten

2.3) Breite des Parshall Gerinnes bei gegebener Tiefe Formel

$$w_{p} = \frac{\left(d\right)^{c_{D}-1}}{c} \quad 0.0523 \, \text{m} = \frac{\left(4.04 \, \text{m}\right)^{0.27-1}}{6.9}$$

Formel auswerten

Beispiel mit Einheiten

Formel auswerten []

$$Q_{e} = \left(2.264 \cdot W_{t} \cdot \left(d_{f}\right)^{\frac{3}{2}}\right) \left| 40.7163 \, m^{3} / s \right| = \left(2.264 \cdot 3 \, m \cdot \left(3.3 \, m\right)^{\frac{3}{2}}\right)$$

2.5) Fließtiefe im Parshall-Gerinne bei einem Abflusskoeffizienten von 1,5 Formel ি Formel auswerten (

Formel Beispiel mit Einheiten
$$H_a = \left(\frac{Q_e}{1.5}\right)^{\frac{1}{n_p}} \boxed{7.7626_m = \left(\frac{39.82\,\text{m}^3/\text{s}}{1.5}\right)^{\frac{1}{1.6}}}$$

Formel auswerten

2.6) Fließtiefe im stromaufwärts gelegenen Teil des Gerinnes an einem Drittelpunkt bei Abfluss Formel

$$d_{f} = \left(\frac{Q_{e}}{2.264 \cdot W_{t}}\right)^{\frac{2}{3}}$$

$$3.2514_{m} = \left(\frac{39.82 \, \text{m}^{3}/\text{s}}{2.264 \cdot 3 \, \text{m}}\right)^{\frac{2}{3}}$$

Beispiel mit Einheiten
$$3.2514 \,\mathrm{m} = \left(\frac{39.82 \,\mathrm{m}^3/\mathrm{s}}{2.364 \,\mathrm{m}^3}\right)^{\frac{1}{2}}$$

2.7) Tiefe des Parshall Flume bei Entladung Formel

Formel auswerten

2.8) Tiefe des Parshall Flume bei gegebener Breite Formel 🗂

Formel

Beispiel mit Einheiten $d_{pf} = \left(c \cdot w \right)^{\frac{1}{C_D \cdot 1}} \left| \ 0.0496_{\,\text{m}} = \left(6.9 \cdot 1.299_{\,\text{m}} \right)^{\frac{1}{0.27 \cdot 1}} \right|$ Formel auswerten

In der Liste von Design der parabolischen Sandkammer Formeln oben verwendete Variablen

- A_{cs} Querschnittsfläche (Quadratmeter)
- Afilter Tropfkörperfläche (Quadratmeter)
- A_p Fläche des Parabolkanals (Quadratmeter)
- C Integrationskonstante
- C_D Entladungskoeffizient
- d Tiefe (Meter)
- dc Kritische Tiefe (Meter)
- df Fließtiefe (Meter)
- d_p Tiefe des Parabolkanals (Meter)
- d_{pf} Tiefe des Parshall-Gerinnes bei gegebener Breite (Meter)
- Ec Energie am kritischen Punkt (Meter)
- F_{area} Durchflussbereich der Kehle (Quadratmeter)
- g Beschleunigung aufgrund der Schwerkraft (Meter / Quadratsekunde)
- H_a Fließtiefe im Parshall-Gerinne (Meter)
- h_f Druckverlust (Meter)
- i Neigung des Bettes
- n Mannings Rauheitskoeffizient
- n_p Konstante für eine 6-Zoll-Parshall-Rinne
- Q_e Umweltbelastung (Kubikmeter pro Sekunde)
- Qp Spitzenentladung (Kubikmeter pro Sekunde)
- $\mathbf{Q}_{ extbf{th}}$ Theoretische Entladung (Kubikmeter pro
- R Hydraulischer Radius (Meter)
- V_c Kritische Geschwindigkeit (Meter pro Sekunde)
- W Breite (Meter)

Sekunde)

- w_p Breite des Parshall-Kanals bei gegebener Tiefe (Meter)
- W_t Breite der Kehle (Meter)
- X₀ Konstante

Konstanten, Funktionen, Messungen, die in der Liste von Design der parabolischen Sandkammer Formeln oben verwendet werden

- Funktionen: log, log(Base, Number)
 Die logarithmische Funktion ist eine Umkehrfunktion zur Exponentiation.
- Funktionen: sqrt, sqrt(Number)
 Eine Quadratwurzelfunktion ist eine Funktion, die eine nicht negative Zahl als Eingabe verwendet und die Quadratwurzel der gegebenen Eingabezahl zurückgibt.
- Messung: Länge in Meter (m)
 Länge Einheitenumrechnung
- Messung: Bereich in Quadratmeter (m²)
 Bereich Einheitenumrechnung
- Messung: Geschwindigkeit in Meter pro Sekunde (m/s)
- Geschwindigkeit Einheitenumrechnung

 Messung: Beschleunigung in Meter /
 - Quadratsekunde (m/s²)

 Beschleunigung Einheitenumrechnung
- Messung: Volumenstrom in Kubikmeter pro Sekunde (m³/s)

Volumenstrom Einheitenumrechnung

Laden Sie andere Wichtig Horizontale Fließkornkanäle mit konstanter Geschwindigkeit-PDFs herunter

- Wichtig Design der parabolischen Sandkammer Formeln
- Wichtig Auslegung des Dosiervorlaufwehrs Formeln (*)

Probieren Sie unsere einzigartigen visuellen Rechner aus

GGT von drei zahlen

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:17:04 AM UTC