# Importante Prueba de bombeo de nivel constante Fórmulas PDF



**Fórmulas Ejemplos** con unidades

#### Lista de 25

Importante Prueba de bombeo de nivel constante Fórmulas

### 1) Área transversal del pozo Fórmulas 🕝

1.1) Área de la sección transversal del pozo Capacidad específica dada Fórmula 🕝



 $A_{\text{sec}} = \frac{K_b}{K_a} = \frac{2.495 \,\text{m}^2}{2 \,\text{m/h}}$ 

Evaluar fórmula (

1.2) Área de la sección transversal del pozo Capacidad específica dada para arena fina Fórmula 🦳





Evaluar fórmula (

1.3) Área de la sección transversal del pozo Capacidad específica dada para arena gruesa Fórmula 🕝



Ejemplo con Unidades  Evaluar fórmula 🕝

1.4) Área de la Sección Transversal del Pozo Capacidad Específica para Suelo Arcilloso Fórmula 🕝



Fórmula Ejemplo con Unidades 
$$A_{CSW} = \frac{Q}{0.25 \cdot H''}$$
 
$$13.2 \, \text{m}^2 = \frac{0.99 \, \text{m}^3/\text{s}}{0.25 \cdot 0.3}$$

Evaluar fórmula (

1.5) Área de sección transversal del flujo en la descarga dada por el pozo Fórmula 🕝

Ejemplo con Unidades

 $A_{CSW} = \left(\frac{Q}{V}\right)$  13.0263 m<sup>2</sup> =  $\left(\frac{0.99 \,\mathrm{m}^3/s}{0.076 \,\mathrm{m/s}}\right)$ 

Evaluar fórmula 🕝

#### 1.6) Área de sección transversal del flujo hacia el pozo dada la descarga del pozo abierto Fórmula 🕝

Ejemplo con Unidades

Evaluar fórmula (

Evaluar fórmula (

Evaluar fórmula (

Evaluar fórmula (

$$A_{csw} = \frac{Q}{C \cdot H}$$

 $A_{csw} = \frac{Q}{C \cdot H}$   $14.1429 \, m^2 = \frac{0.99 \, m^3/s}{0.01 \, m/s \cdot 7 \, m}$ 

# 2) Cabeza de depresión Fórmulas 🕝

2.1) Altura de depresión constante dada la capacidad específica para arena fina Fórmula 🕝



Ejemplo con Unidades  $H_f = \frac{Q}{A_{csw} \cdot 0.5}$   $0.1523 = \frac{0.99 \, m^3/s}{13 \, m^2 \cdot 0.5}$ 

# 2.2) Altura de depresión constante dada la capacidad específica para arena gruesa Fórmula

 $H_c = \frac{Q}{A_{csw} \cdot 1}$   $0.0762 = \frac{0.99 \, \text{m}^3/\text{s}}{13 \, \text{m}^2 \cdot 1}$ 

#### 2.3) Carga de depresión constante dada la capacidad específica Fórmula 🕝



H' =  $\frac{Q}{A_{CSW} \cdot S_{Si}}$   $0.0381 = \frac{0.99 \,\text{m}^3/\text{s}}{13 \,\text{m}^2 \cdot 2.0 \,\text{m/s}}$ 

#### 2.4) Carga de depresión constante dada la capacidad específica para suelos arcillosos Fórmula 🗂

Fórmula

Ejemplo con Unidades H" =  $\frac{Q}{A_{csw} \cdot 0.25}$   $0.3046 = \frac{0.99 \,\text{m}^3/\text{s}}{13 \,\text{m}^2 \cdot 0.25}$ 

# Evaluar fórmula 🕝

## 2.5) Depresión Cabeza dada Descarga Fórmula 🕝

Fórmula

Ejemplo con Unidades

Evaluar fórmula 🕝

$$H = \left(\frac{Q}{A_{CSW} \cdot C}\right) \left[7.6154_{m} = \left(\frac{0.99_{m^{3}/s}}{13_{m^{2}} \cdot 0.01_{m/s}}\right)\right]$$

# 3) Descarga de pozo Fórmulas 🕝

3.1) Coeficiente de intensidad de percolación dada la descarga Fórmula 🕝

Evaluar fórmula (

Evaluar fórmula 🕅

Evaluar fórmula (

Evaluar fórmula (

Evaluar fórmula 🕝

Evaluar fórmula 🕝

Evaluar fórmula 🕝

Evaluar fórmula 🕝



3.2) Descarga de pozo abierto dada cabeza de depresión Fórmula



3.3) Descarga de pozo abierto dada la velocidad media del agua que se filtra Fórmula 🗂

3.4) Descarga de Pozo Capacidad Específica Fórmula 🗂

Fórmula Ejemplo con Unidades 
$$Q = S_{si} \cdot A_{csw} \cdot H' \qquad 0.988 \, \text{m}^3/\text{s} = 2.0 \, \text{m/s} \cdot 13 \, \text{m}^2 \cdot 0.038$$

3.5) Descarga de Pozo Capacidad Específica para Arena Fina Fórmula 🕝

3.6) Descarga de Pozo Capacidad Específica para Suelo Arcilloso Fórmula 🗂

3.7) Descarga de Pozo dada Capacidad Específica para Arena Gruesa Fórmula 🗂

$$\begin{array}{c|c} \hline \text{F\'ormula} & \hline \\ Q = 1 \cdot A_{CSW} \cdot H_C & \hline \\ 0.91 \, \text{m}^3/\text{s} & = 1 \cdot 13 \, \text{m}^2 \, \cdot 0.07 \\ \hline \end{array}$$

3.8) Tiempo en Horas dada Capacidad Específica de Pozo Abierto Fórmula 🕝

Fórmula Ejemplo con Unidades 
$$t = \left(\frac{1}{K_a}\right) \cdot \log \left(\left(\frac{h_d}{h_{w2}}\right), e\right) \qquad 0.5034 \, h = \left(\frac{1}{2 \, \text{m/h}}\right) \cdot \log \left(\left(\frac{27 \, \text{m}}{10 \, \text{m}}\right), e\right)$$



Fórmula 
$$t = \left(\frac{2.303}{K_a}\right) \cdot log\left(\left(\frac{h_d}{h_{w2}}\right), 10\right)$$

Evaluar fórmula (

Evaluar fórmula 🕝

$$t = \left(\frac{2.303}{K_a}\right) \cdot log\left(\left(\frac{h_d}{h_{w2}}\right), 10\right) \qquad 2.6694h = \left(\frac{2.303}{2 \text{ m/h}}\right) \cdot log\left(\left(\frac{27 \text{ m}}{10 \text{ m}}\right), 10\right)$$

3.10) Velocidad media del agua que se filtra en el pozo Fórmula 🕝



Ejemplo con Unidades  $V = \frac{Q}{A_{csw}} \left[ \quad \right] \quad 0.0762 \, \text{m/s} = \frac{0.99 \, \text{m}^3/\text{s}}{13 \, \text{m}^2}$ 

# 4) Capacidad Específica Fórmulas 🗗

# 4.1) Capacidad Específica dada Descarga de Pozo Fórmula 🕝



Ejemplo con Unidades  $S_{si} = \frac{Q}{A_{.....} \cdot H'}$   $2.004 \,\text{m/s} = \frac{0.99 \,\text{m}^3/\text{s}}{13 \,\text{m}^2 \cdot 0.038}$ 

# Evaluar fórmula (

## 4.2) Capacidad Específica de Pozo Abierto Fórmula 🕝

Fórmula

Ejemplo con Unidades  $K_{a} = \left(\frac{1}{t}\right) \cdot \log\left(\left(\frac{h_{d}}{h_{m2}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{h}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{m}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{m}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{m}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right) \left| \quad 0.2517_{m/h} \right| = \left(\frac{1}{4_{m}}\right) \cdot \log\left(\left(\frac{27_{m}}{10_{m}}\right), e\right| = \left(\frac{1}{4_{m}}\right) \cdot \log\left(\frac{27_{m}}{10_{m}}\right)$  Evaluar fórmula (

Evaluar fórmula 🕝

#### 4.3) Capacidad Específica de Pozo Abierto con Base 10 Fórmula 🕝

$$K_{a} = \left(\frac{2.303}{t}\right) \cdot \log\left(\left(\frac{h_{d}}{h_{w2}}\right), 10\right)$$

 $K_{a} = \left(\frac{2.303}{t}\right) \cdot log\left(\left(\frac{h_{d}}{h_{w2}}\right), 10\right) \left| \quad \left| \quad 1.3347 \, \text{m/h} \right| = \left(\frac{2.303}{4 \, \text{h}}\right) \cdot log\left(\left(\frac{27 \, \text{m}}{10 \, \text{m}}\right), 10\right) \right|$ 

#### 4.4) Capacidad específica de pozo abierto dada constante dependiendo del suelo en la base Fórmula 🕝

Ejemplo con Unidades

Evaluar fórmula 🕝

$$K_{a} = \frac{K_{b}}{A_{CSW}}$$

$$0.3838 \, \text{m/h} = \frac{4.99 \, \text{m}^{3} / \text{hr}}{13 \, \text{m}^{2}}$$

#### Variables utilizadas en la lista de Prueba de bombeo de nivel constante Fórmulas anterior

- A<sub>CSW</sub> Área de la sección transversal del pozo (Metro cuadrado)
- A<sub>sec</sub> Área de sección transversal dada la capacidad específica (Metro cuadrado)
- C Coeficiente de intensidad de percolación (Metro por Segundo)
- **H** Altura de la depresión (Metro)
- H' Depresión constante en la cabeza
- H" Presión de depresión constante para suelos arcillosos
- H<sub>c</sub> Cabezal de depresión constante para arena gruesa
- h<sub>d</sub> Depresión en la cabeza (Metro)
- H<sub>f</sub> Presión constante del cabezal para suelos finos
- h<sub>w2</sub> Cabeza de depresión en el pozo 2 (Metro)
- Ka Capacidad específica (Metro por hora)
- K<sub>b</sub> Constante dependiente del suelo base (Metro cúbico por hora)
- Q Descarga en pozo (Metro cúbico por segundo)
- S<sub>si</sub> Capacidad específica en unidades del SI (Metro por Segundo)
- t Tiempo (Hora)
- V Velocidad media (Metro por Segundo)

# Constantes, funciones y medidas utilizadas en la lista de Prueba de bombeo de nivel constante Fórmulas anterior

- constante(s): e,
   2.71828182845904523536028747135266249
   la constante de napier
- Funciones: log, log(Base, Number)
   La función logarítmica es una función inversa a la exponenciación.
- Medición: Longitud in Metro (m)
   Longitud Conversión de unidades

Medición: Tiempo in Hora (h)

Tiempo Conversión de unidades 
Medición: Área in Metro cuadrado (m²)

Área Conversión de unidades 🗂

- Medición: Velocidad in Metro por hora (m/h), Metro por Segundo (m/s)
   Velocidad Conversión de unidades
- Medición: Tasa de flujo volumétrico in Metro cúbico por hora (m³/hr), Metro cúbico por segundo (m³/s)
   Tasa de flujo volumétrico Conversión de unidades



# Descargue otros archivos PDF de Importante Rendimiento de un pozo abierto

Importante Prueba de bombeo de nivel constante Fórmulas

#### Pruebe nuestras calculadoras visuales únicas

- Porcentaje ganador
- MCM de dos números 🕝

• Tracción mixta

¡COMPARTE este PDF con alguien que lo necesite!

#### Este PDF se puede descargar en estos idiomas.

English Spanish French German Russian Italian Portuguese Polish Dutch

9/30/2024 | 1:07:59 PM UTC