Important Principal Stress Formulas PDF

List of 32

Important Principal Stress Formulas

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula 🕝

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula (

1) Combined Bending and Torsion Condition Formulas

1.1) Angle of Twist in Combined Bending and Torsion Formula 🕝

Example with Units
$$30^{\circ} = \frac{\arctan\left(\frac{0.116913\,\text{MPa}}{67.5\,\text{kN}^{\circ}\text{m}}\right)}{2}$$

1.2) Angle of Twist in Combined Bending and Torsional Stress Formula C

1.3) Bending Moment given Combined Bending and Torsion Formula 🕝

1.4) Bending Stress given Combined Bending and Torsional Stress Formula 🕝

$$\sigma_b = \frac{T}{\frac{\tan{(2 \cdot \theta)}}{2}} \quad \boxed{0.135 \, \text{MPa} = \frac{0.116913 \, \text{MPa}}{\frac{\tan{(2 \cdot 30 \cdot)}}{2}}}$$

1.5) Torsional Moment when Member is subjected to both Bending and Torsion Formula 🕝

1.6) Torsional Stress given Combined Bending and Torsional Stress Formula 🕝

Example with Units
$$0.1169 \, \text{MPa} = 67.5 \, \text{kN*m} \cdot \left(\, \text{tan} \left(\, 2 \cdot 30^{\circ} \, \right) \, \right)$$

2) Complementary Induced Stress Formulas 🕝

2.1) Angle of Oblique Plane using Normal Stress when Complementary Shear Stresses Induced Formula 🕝

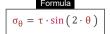
Formula Example with Units
$$\theta = \frac{a\sin\left(\frac{\sigma_{\theta}}{\tau}\right)}{2}$$

$$44.4537^{\circ} = \frac{a\sin\left(\frac{54.99 \, \text{MPa}}{55 \, \text{MPa}}\right)}{2}$$

2.2) Angle of Oblique Plane using Shear Stress when Complementary Shear Stresses Induced Formula (

$$\theta = 0.5 \cdot \arccos\left(\frac{\tau_{\theta}}{\tau}\right) \boxed{ 29.6105^{\circ} = 0.5 \cdot \arccos\left(\frac{28.145\,\text{MPa}}{55\,\text{MPa}}\right) }$$

2.3) Normal Stress when Complementary Shear Stresses Induced Formula 🕝



Formula Example with Units
$$\sigma_{\theta} = \tau \cdot \sin\left(2 \cdot \theta\right)$$

$$47.6314 \, \text{MPa} = 55 \, \text{MPa} \cdot \sin\left(2 \cdot 30^{\circ}\right)$$

2.4) Shear Stress along Oblique Plane when Complementary Shear Stresses Induced Formula 🕝

$$\tau_{\theta} = \tau \cdot \cos(2 \cdot \theta)$$

$$\tau_{\theta} = \tau \cdot \cos\left(2 \cdot \theta\right) \\ \hline \begin{bmatrix} 27.5 \, \text{MPa} & = 55 \, \text{MPa} \cdot \cos\left(2 \cdot 30^{\circ}\right) \end{bmatrix}$$

2.5) Shear Stress due to Effect of Complementary Shear Stresses and Shear Stress in Oblique Plane Formula 🕝

$$\tau = \frac{\tau_{\theta}}{\cos(2 \cdot \theta)}$$

Formula Example with Units
$$\tau = \frac{\tau_{\theta}}{\cos\left(2 \cdot \theta\right)} \qquad 56.29 \, \text{MPa} = \frac{28.145 \, \text{MPa}}{\cos\left(2 \cdot 30^{\circ}\right)}$$

2.6) Shear Stress due to Induced Complementary Shear Stresses and Normal Stress on Oblique Plane Formula 🖰

$$\tau = \frac{\sigma_{\theta}}{\sin(2 \cdot \theta)}$$

Formula Example with Units
$$\tau = \frac{\sigma_{\theta}}{\sin\left(2 \cdot \theta\right)} = \frac{54.99 \, \text{MPa}}{\sin\left(2 \cdot 30^{\circ}\right)}$$

3.1) Bending Stress of Circular Shaft given Equivalent Bending Moment Formula 🕝

Formula Example with Units
$$\sigma_b = \frac{32 \cdot M_e}{\pi \cdot \left(\phi^3 \right)} \quad \boxed{ 0.7243 \, \text{MPa} = \frac{32 \cdot 30 \, \text{kN}^* \text{m}}{3.1416 \cdot \left(750 \, \text{mm}^{\ 3} \right)} }$$

Evaluate Formula 🕝

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula 🕝

3.2) Diameter of Circular Shaft for Equivalent Torque and Maximum Shear Stress Formula 🕝

Formula
$$\Phi = \left(\frac{16 \cdot T_e}{\pi \cdot \left(\tau_{\text{max}}\right)}\right)^{\frac{1}{3}}$$

Formula Example with Units
$$\Phi = \left(\frac{16 \cdot T_e}{\pi \cdot \left(\tau_{max}\right)}\right)^{\frac{1}{3}}$$

$$157.1413 \, \text{mm} = \left(\frac{16 \cdot 32 \, \text{kN*m}}{3.1416 \cdot \left(42 \, \text{MPa}\right)}\right)^{\frac{1}{3}}$$

Evaluate Formula

Evaluate Formula 🕝

3.3) Diameter of Circular Shaft given Equivalent Bending Stress Formula 🕝

Formula
$$\Phi = \left(\frac{32 \cdot M_e}{\pi \cdot \left(\sigma_b\right)}\right)^{\frac{1}{3}}$$

Formula Example with Units
$$\Phi = \left(\frac{32 \cdot M_e}{\pi \cdot \left(\sigma_b\right)}\right)^{\frac{1}{3}}$$

$$751.5011_{mm} = \left(\frac{32 \cdot 30_{\,\text{kN*m}}}{3.1416 \cdot \left(0.72_{\,\text{MPa}}\right)}\right)^{\frac{1}{3}}$$

3.4) Equivalent Bending Moment of Circular Shaft Formula 🕝

Formula
$$M_{e} = \frac{\sigma_{b}}{\frac{32}{\pi \cdot (\Phi^{3})}}$$

Evaluate Formula 🕝

Evaluate Formula 🕝

3.5) Equivalent Torque given Maximum Shear Stress Formula 🗂

Formula
$$T_{e} = \frac{\tau_{max}}{\frac{16}{\pi \cdot (\Phi^{3})}}$$

Formula Example with Units
$$T_{e} = \frac{\tau_{max}}{\frac{16}{\pi \cdot \left(\Phi^{3}\right)}} \quad \boxed{ 3479.0684 \, \text{kN*m} = \frac{42 \, \text{MPa}}{\frac{16}{3.1416 \cdot \left(750 \, \text{mm}^{3}\right)}} }$$

3.6) Location of Principal Planes Formula

Formula
$$\theta = \left(\left(\left(\frac{1}{2} \right) \cdot a tan \left(\frac{2 \cdot \tau_{xy}}{\sigma_y - \sigma_x} \right) \right) \right)$$

Formula Example with Units
$$\theta = \left(\left(\left(\frac{1}{2} \right) \cdot a tan \left(\frac{2 \cdot \tau_{xy}}{\sigma_y \cdot \sigma_x} \right) \right) \right)$$

$$6.2457^{\circ} = \left(\left(\left(\frac{1}{2} \right) \cdot a tan \left(\frac{2 \cdot 7.2 \, \text{MPa}}{110 \, \text{MPa} \cdot 45 \, \text{MPa}} \right) \right) \right)$$

3.7) Maximum Shear Stress due to Equivalent Torque Formula [7]

Formula
$$\tau_{\text{max}} = \frac{16 \cdot T_{\text{e}}}{\pi \cdot \left(\Phi^{3}\right)}$$

Formula Example with Units
$$\tau_{max} = \frac{16 \cdot T_e}{\pi \cdot \left(\Phi^3\right)} \quad \boxed{ 0.3863 \, \text{MPa} = \frac{16 \cdot 32 \, \text{kN*m}}{3.1416 \cdot \left(750 \, \text{mm}^{-3}\right)} }$$

Evaluate Formula 🕝

Evaluate Formula 🦳

4) Maximum Shear Stress on the Biaxial Loading Formulas (

4.1) Maximum Shear Stress when Member is Subjected to like Principal Stresses Formula 🕝

Example with Onlis
$$a = \frac{1}{2} \cdot \left(110 \, \text{MPa} - 45 \, \text{MPa} \right)$$

Evaluate Formula 🕝

4.2) Stress along X-Axis when Member is Subjected to like Principal Stresses and Max Shear Stress Formula 🕝

Example with Units

Evaluate Formula 🕝

 $\sigma_{x} = \sigma_{y} - \left(2 \cdot \tau_{max}\right)$ $26 \, \text{MPa} = 110 \, \text{MPa} - \left(2 \cdot 42 \, \text{MPa}\right)$

4.3) Stress along Y-Axis when Member is Subjected to like Principal Stresses and Max Shear Stress Formula (

Formula Example with Units $\sigma_y = 2 \cdot \tau_{max} + \sigma_x \qquad \boxed{129 \, {\rm MPa} \, = 2 \cdot 42 \, {\rm MPa} \, + 45 \, {\rm MPa}}$ Example with Units

Evaluate Formula 🕝

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula 🕝

5) Stresses in Bi-Axial Loading Formulas 🕝

5.1) Normal Stress Induced in Oblique Plane due to Biaxial Loading Formula 🕝

$$\sigma_{\theta} = \left(\frac{1}{2} \cdot \left(\sigma_{x} + \sigma_{y}\right)\right) + \left(\frac{1}{2} \cdot \left(\sigma_{x} - \sigma_{y}\right) \cdot \left(\cos\left(2 \cdot \theta\right)\right)\right) + \left(\tau_{xy} \cdot \sin\left(2 \cdot \theta\right)\right)$$

$$67.4854\,\text{MPa} \; = \left(\frac{1}{2}\cdot\left(\;45\,\text{MPa}\;+\;110\,\text{MPa}\;\right)\;\right) \; + \; \left(\frac{1}{2}\cdot\left(\;45\,\text{MPa}\;-\;110\,\text{MPa}\;\right) \; \cdot \; \left(\;\cos\left(\;2\cdot\;30^\circ\;\right)\;\right)\;\right) \; + \; \left(\;7.2\,\text{MPa}\;\cdot\sin\left(\;2\cdot\;30^\circ\;\right)\;\right) \; \right) \; + \; \left(\;7.2\,\text{MPa}\;\cdot\sin\left(\;2\cdot\;30^\circ\;\right)\;\right) \; + \; \left(\;7.2\,\text{MPa}\;\cdot\sin\left(\;20^\circ\;30^\circ\;\right)\;\right) \; + \; \left(\;7.2\,\text{MPa}\;\cdot\sin\left(\;20^\circ\;30^\circ\;30^\circ\;\right)\;\right) \; + \; \left(\;7.2\,\text{MPa}\;\cdot\sin\left(\;20^\circ\;30^\circ\;\right)\;\right) \; + \; \left(\;7.2\,\text{MPa}\;\cdot$$

5.2) Shear Stress Induced in Oblique Plane due to Biaxial Loading Formula 🗂

$$\tau_{\theta} = -\left(\frac{1}{2} \cdot \left(\sigma_{x} - \sigma_{y}\right) \cdot \sin\left(2 \cdot \theta\right)\right) + \left(\tau_{xy} \cdot \cos\left(2 \cdot \theta\right)\right)$$

Example with Units

$$31.7458 \, \text{MPa} = -\left(\frac{1}{2} \cdot \left(45 \, \text{MPa} - 110 \, \text{MPa}\right) \cdot \sin\left(2 \cdot 30^{\circ}\right)\right) + \left(7.2 \, \text{MPa} \cdot \cos\left(2 \cdot 30^{\circ}\right)\right)$$

5.3) Stress along X- Direction with known Shear Stress in Bi-Axial Loading Formula 🕝 Evaluate Formula

Formula

 $\sigma_{x} = \sigma_{y} - \left(\frac{\tau_{\theta} \cdot 2}{\sin\left(2 \cdot \theta\right)}\right) \left| 45.0019 \,_{\text{MPa}} = 110 \,_{\text{MPa}} - \left(\frac{28.145 \,_{\text{MPa}} \cdot 2}{\sin\left(2 \cdot 30^{\circ}\right)}\right) \right|$

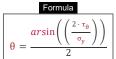
5.4) Stress along Y- Direction using Shear Stress in Bi-Axial Loading Formula 🗂

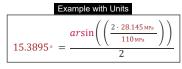
Formula

$$\sigma_y = \sigma_x + \left(\frac{\tau_\theta \cdot 2}{\sin\left(2 \cdot \theta\right)}\right) \boxed{109.9981 \text{MPa} = 45 \text{MPa} + \left(\frac{28.145 \text{MPa} \cdot 2}{\sin\left(2 \cdot 30^\circ\right)}\right)}$$

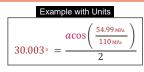
6) Stresses of Members Subjected to Axial Loading Formulas (

6.1) Angle of Oblique Plane using Shear Stress and Axial Load Formula 🕝





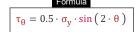
6.2) Angle of Oblique plane when Member Subjected to Axial Loading Formula



6.3) Normal Stress when Member Subjected to Axial Load Formula

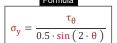
Formula
$$\sigma_{\theta} = \sigma_{y} \cdot \cos(2 \cdot \theta)$$

6.4) Shear Stress when Member Subjected to Axial Load Formula



$$\tau_{\theta} = 0.5 \cdot \sigma_{y} \cdot \sin\left(2 \cdot \theta\right) \qquad 47.6314 \,_{MPa} = 0.5 \cdot 110 \,_{MPa} \cdot \sin\left(2 \cdot 30^{\circ}\right)$$

6.5) Stress along Y-direction given Shear Stress in Member subjected to Axial Load Formula 🗂



6.6) Stress along Y-direction when Member Subjected to Axial Load Formula C

Formula Example with Units
$$\sigma_y = \frac{\sigma_\theta}{\cos\left(2 \cdot \theta\right)} \qquad 109.98 \, \text{MPa} \, = \frac{54.99 \, \text{MPa}}{\cos\left(2 \cdot 30^{\circ}\right)}$$

Evaluate Formula

Evaluate Formula 🕝

Evaluate Formula (

Evaluate Formula 🕝

Evaluate Formula 🕝

Evaluate Formula (

Variables used in list of Principal Stress Formulas above

- M Bending Moment (Kilonewton Meter)
- Me Equivalent Bending Moment (Kilonewton Meter)
- T Torsion (Megapascal)
- T_a Equivalent Torque (Kilonewton Meter)
- θ Theta (Degree)
- σ_b Bending Stress (Megapascal)
- σ_x Stress along x Direction (Megapascal)
- σ_v Stress along y Direction (Megapascal)
- σ_A Normal Stress on Oblique Plane (Megapascal)
- T Shear Stress (Megapascal)
- T_{max} Maximum Shear Stress (Megapascal)
- T_{XV} Shear Stress xy (Megapascal)
- TA Shear Stress on Oblique Plane (Megapascal)
- Φ Diameter of Circular Shaft (Millimeter)

Constants, Functions, Measurements used in list of Principal Stress Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: acos, acos(Number)
 The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Functions: arccos, arccos(Number)
 Arccosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Functions: arctan, arctan(Number)
 Inverse trigonometric functions are usually accompanied by the prefix arc. Mathematically, we represent arctan or the inverse tangent function as tan-1 x or arctan(x).
- Functions: arsin, arsin(Number)
 Arcsine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.
- Functions: asin, asin(Number)
 The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.
- Functions: atan, atan(Number)
 Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Functions: cos, cos(Angle)

 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Functions: ctan, ctan(Angle)
 Cotangent is a trigonometric function that is defined as the ratio of the adjacent side to the opposite side in a right triangle.
- Functions: sin, sin(Angle)
 Sine is a trigonometric function that describes the ratio
 of the length of the opposite side of a right triangle to
 the length of the hypotenuse.
- Functions: tan, tan(Angle)
 The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: Torque in Kilonewton Meter (kN*m)

 Torque Unit Conversion
- Measurement: Moment of Force in Kilonewton Meter (kN*m)
 - Moment of Force Unit Conversion
- Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Download other Important Strength of Materials PDFs

- Important Beam Moments Formulas
- Important Bending Stress Formulas
- Important Combined Axial and Bending Loads Formulas (*)
- Important Principal Stress Formulas
- Important Shear Stress Formulas
- Important Slope and Deflection
 Formulas
- Important Strain Energy Formulas
- Important Stress and Strain Formulas
- Important Thermal Stress Formulas
 Important Torsion Formulas

Try our Unique Visual Calculators

- Percentage decrease
- III HCF of three numbers

Multiply fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 9:52:28 AM UTC