Important Wave Celerity Formulas PDF

Formulas Examples with Units

 $\boldsymbol{\lambda}_{s}$

List of 12

Important Wave Celerity Formulas

1) Celerity of Deepwater Wave Formula 🕝				
$C_{o} = \sqrt{\frac{[g] \cdot \lambda_{o}}{2 \cdot \pi}}$	Example with Units $4.5045 \text{ m/s} = \sqrt{\frac{9.8066 \text{m/s}^2 \cdot 13 \text{ m}}{2 \cdot 3.1416}}$	Evaluate Formul		
2) Celerity of Wave o	iven Deepwater Celerity and Wa	avelength Formula 🕝		

_,,			
Formula	Example with Units	1	Evaluate Formula 🕝
$C_{s} = \frac{C_{o} \cdot \lambda_{s}}{\lambda_{o}}$	$2.7692{\rm m/s}\ =\ \frac{4.5{\rm m/s}\cdot8{\rm m}}{13{\rm m}}$		
3) Deepwater Ce	lerity for Deepwater wav	elength Formula 🕝	
Formula	Example with Units		Evaluate Formula
$C_{o} = \frac{C_{s} \cdot \lambda_{o}}{\lambda}$	$4.55{\rm m/s}\ = \frac{2.8{\rm m/s}\ \cdot\ 13{\rm m}}{8{\rm m}}$		

4) Deepwater Celerit	y given Units of Feet and See	conds Formula 🕝
Formula	Example with Units	Evaluate Formula 👉
$C_f = 5.12 \cdot T$	$50.3937 \text{ft/s} = 5.12 \cdot 3 \text{s}$	
5) Deepwater	Celerity given Wave Period I	Formula 🕝

Formula

$$C_{0} = \frac{[g] \cdot T}{2 \cdot \pi}$$

$$4.6823 \text{ m/s} = \frac{9.8066 \text{ m/s}^{2} \cdot 3s}{2 \cdot 3.1416}$$
Evaluate Formula

6) Deepwater Celerity when SI systems Units of Meters and Seconds is considered Formula

Formula Example with Units
$$C_0 = 1.56 \cdot T$$

$$4.68 \text{ m/s} = 1.56 \cdot 3 \text{ s}$$

Variables used in list of Wave Celerity Formulas above

- C_f Celerity in FPS Unit (Foot per Second)
- Co Deepwater Wave Celerity (Meter per Second)
- C_s Celerity for Shallow Depth (Meter per Second)
- d Water Depth (Meter)
- d_s Shallow Depth (Meter)
- T Wave Period (Second)
- λ_o DeepWater Wavelength (Meter)
- λ_s Wavelength for Shallow Depth (Meter)

Constants, Functions, Measurements used in list of Wave Celerity Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- constant(s): [g], 9.80665
 Gravitational acceleration on Earth
- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Functions: tanh, tanh(Number) The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s), Foot per Second (ft/s)
 Speed Unit Conversion C

Download other Important Water Wave Mechanics PDFs

	s 🛃
• Important Wave Height Formula	
Important Horizontal and Vertical Semi- Important Wave Parameters	
Axis of Ellipse Formulas 🕝 Formulas 🕝	
Important Parametric Spectrum Models Important Wave Period Formula	s 裙
Formulas 🕝 Important Wave Period Distribut	ion
Important Solitary Wave Formulas 🕝 and Wave Spectrum Formulas 🕑	•
Important Subsurface Pressure Important Wavelength Formulas	6
Formulas 🕝 Important Zero-Crossing Method	k
Important Wave Celerity Formulas 🕝 Formulas 🕝	

Try our Unique Visual Calculators

- Percentage of number I in the second s
- 🎆 LCM calculator 🕝

Simple fraction C

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 9:36:32 AM UTC

