Important Laminar Flow of Fluid in an Open Channel Formulas PDF

8) Discharge per unit channel width Formula 🕝

Formula	Example with Units
$\gamma_f \cdot s \cdot d_{section}^{3}$	9.81 kN/m ³ \cdot 0.01 \cdot 5 m ³
$v = \frac{3 \cdot \mu}{3 \cdot \mu}$	4.0074m ⁻ /s = <u>3 · 10.2</u> p

9) Dynamic Viscosity given Discharge per Unit Channel Width Formula 🕝

Formula Example with Units

$$\mu = \frac{\gamma_{f} \cdot s \cdot d_{section}^{3}}{3 \cdot \nu} \qquad 10.2188_{P} = \frac{9.81_{kN/m^{3}} \cdot 0.01 \cdot 5_{m}^{3}}{3 \cdot 4_{m^{2}/s}}$$

10) Dynamic Viscosity given Mean Velocity of Flow in Section Formula 🕝

$$L = \frac{h_L \cdot \gamma_f \cdot \left(d_{section}^2\right)}{3 \cdot \mu \cdot V_{mean}} \left[15.2279_m = \frac{1.9_m \cdot 9.81_{kN/m^3} \cdot \left(5_m^2\right)}{3 \cdot 10.2_P \cdot 10_{m/s}} \right]$$

Evaluate Formula (

Evaluate Formula

FormulaExample with Units
$$s = \frac{3 \cdot \mu \cdot \nu}{\gamma_f \cdot d_{section}}$$
 $0.01 = \frac{3 \cdot 10.2 \, \text{p} \cdot 4 \, \text{m}^2/\text{s}}{9.81 \, \text{kN/m}^3 \cdot 5 \, \text{m}^3}$

17) Slope of Channel given Shear Stress Formula 🕝

Evaluate Formula

19.3) Rate of Flow given Pressure Gradient Formula Formula Evaluate Formula $Q = 0.5 \cdot V_{mean} \cdot h \cdot \left(dp | dr \cdot \frac{h^3}{12 \cdot \mu} \right)$ Example with Units $0.8142 \text{ m}^3\text{/s} = 0.5 \cdot 10 \text{ m/s} \cdot 1.81 \text{ m} \cdot \left(17 \text{ N/m}^3 \cdot \frac{1.81 \text{ m}^3}{12 \cdot 10.2 \text{ p}} \right)$

Variables used in list of Laminar Flow of Fluid in an Open Channel Formulas above

- d_{section} Diameter of Section (Meter)
- dh|dx Piezometric Gradient
- **dp|dr** Pressure Gradient (Newton per Cubic Meter)
- h Height of Channel (Meter)
- H Hydraulic Gradient
- h_L Head Loss due to Friction (Meter)
- **k** Coefficient of Permeability (Centimeter per Second)
- L Length of Pipe (Meter)
- Q Discharge in Pipe (Cubic Meter per Second)
- R Horizontal Distance (Meter)
- S Slope of Bed
- Slope of Surface of Constant Pressure
- Vmean Mean Velocity (Meter per Second)
- γ_f Specific Weight of Liquid (Kilonewton per Cubic Meter)
- µ Dynamic Viscosity (Poise)
- V Kinematic Viscosity (Square Meter per Second)
- τ Shear Stress (Pascal)

Constants, Functions, Measurements used in list of Laminar Flow of Fluid in an Open Channel Formulas above

- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P)
 Dynamic Viscosity Unit Conversion
- Measurement: Kinematic Viscosity in Square Meter per Second (m²/s)
 Kinematic Viscosity Unit Conversion C
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)
 Specific Weight Unit Conversion C
- Measurement: Pressure Gradient in Newton per Cubic Meter (N/m³) Pressure Gradient Unit Conversion
- Measurement: Stress in Pascal (Pa) Stress Unit Conversion

- Important Dash Pot Mechanism
 Formulas
- Important Laminar Flow around a Sphere Stokes' Law Formulas Implication
- Important Laminar Flow between Parallel Flat Plates, one plate moving and other at rest, Couette Flow Formulas
- Important Laminar Flow between Parallel Plates, both Plates at Rest Formulas (
- Important Laminar Flow of Fluid in an Open Channel Formulas
- Important Measurement of Viscosity Viscometers Formulas ()
- Important Steady Laminar Flow in Circular Pipes Formulas

Try our Unique Visual Calculators

• 🔀 Percentage share 🕝

HCF of two numbers

• \overline 🌆 Improper fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/30/2024 | 11:27:36 AM UTC

