Important Conduction in Sphere Formulas PDF

List of 11

Important Conduction in Sphere Formulas

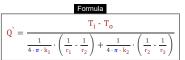
Evaluate Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula


Evaluate Formula

1) Convection Resistance for Spherical Layer Formula

$$013 \text{ K/W} = \frac{1}{4 \cdot 3.1416 \cdot 1.4142 \text{ m}^2 \cdot 30 \text{ W/m}^{2*}\text{K}}$$

2) Heat Flow Rate through Spherical Composite Wall of 2 Layers in Series Formula 🕝

$$1.3889 w = \frac{305 \kappa - 300 \kappa}{\frac{1}{4 \cdot 3.1416 \cdot 0.001 w/(m^3 K)} \cdot \left(\frac{1}{5m} - \frac{1}{6m}\right) + \frac{1}{4 \cdot 3.1416 \cdot 0.002 w/(m^3 K)} \cdot \left(\frac{1}{6m} - \frac{1}{7m}\right)}$$

3) Heat Flow Rate through Spherical Wall Formula C

$$Q = \frac{T_i \cdot T_o}{\frac{r_2 \cdot r_1}{4 \cdot \pi \cdot k \cdot r_1 \cdot r_2}} = \frac{3769.9112 w}{\frac{6m \cdot 5m}{4 \cdot 3.1416 \cdot 2w/(m^*k) \cdot 5m \cdot 6m}}$$

4) Inner Surface Temperature of Spherical Wall Formula C

Formula
$$T_{i} = T_{o} + \frac{Q}{4 \cdot \pi \cdot k} \cdot \left(\frac{1}{r_{1}} \cdot \frac{1}{r_{2}}\right)$$

$$T_{i} = T_{o} + \frac{Q}{4 \cdot \pi \cdot k} \cdot \left(\frac{1}{r_{1}} \cdot \frac{1}{r_{2}}\right) \\ \hline 305 \kappa = 300 \kappa + \frac{3769.9111843 w}{4 \cdot 3.1416 \cdot 2 w/(m^{*} k)} \cdot \left(\frac{1}{5 \text{ m}} \cdot \frac{1}{6 \text{ m}}\right)$$

5) Outer Surface Temperature of Spherical Wall Formula C

$$T_{o} = T_{i} - \frac{Q}{4 \cdot \pi \cdot k} \cdot \left(\frac{1}{r_{1}} \cdot \frac{1}{r_{2}}\right)$$

$$T_{o} = T_{i} \cdot \frac{Q}{4 \cdot \pi \cdot k} \cdot \left(\frac{1}{r_{1}} \cdot \frac{1}{r_{2}}\right)$$

$$300 \kappa = 305 \kappa \cdot \frac{3769.9111843 w}{4 \cdot 3.1416 \cdot 2 w/(m^{*}K)} \cdot \left(\frac{1}{5 m} \cdot \frac{1}{6 m}\right)$$

6) Thermal Resistance of Spherical Composite Wall of 2 Layers in Series with Convection Formula 🗂

 $R_{th} = \frac{1}{4 \cdot \pi} \cdot \left(\frac{1}{{h_i \cdot {r_1}}^2} + \frac{1}{{k_1}} \cdot \left(\frac{1}{{r_1}} \cdot \frac{1}{{r_2}} \right) + \frac{1}{{k_2}} \cdot \left(\frac{1}{{r_2}} \cdot \frac{1}{{r_3}} \right) + \frac{1}{{h_0 \cdot {r_3}}^2} \right)$

$$7.3198 \text{ k/w} = \frac{1}{4 \cdot 3.1416} \cdot \left(\frac{1}{0.001038 \text{ W/m}^{2} \text{ k} \cdot 5 \text{ m}^{2}} + \frac{1}{0.001 \text{ W/(m}^{4} \text{ K})} \cdot \left(\frac{1}{5 \text{ m}} \cdot \frac{1}{6 \text{ m}} \right) + \frac{1}{0.002 \text{ W/(m}^{4} \text{ K})} \cdot \left(\frac{1}{6 \text{ m}} \cdot \frac{1}{7 \text{ m}} \right) + \frac{1}{0.002486 \text{ W/m}^{2} \text{ k} \cdot 7 \text{ m}^{2}} \right)$$

7) Thermal Resistance of Spherical Wall Formula 🗂

Formula

Example with Units

Evaluate Formula

$$r_{th} = \frac{r_2 \cdot r_1}{4 \cdot \pi \cdot k \cdot r_1 \cdot r_2}$$

$$0.0013\,\text{K/W} \; = \frac{6\,\text{m} \; \cdot 5\,\text{m}}{4 \cdot 3.1416 \cdot 2\,\text{W/(m*K)} \; \cdot 5\,\text{m} \; \cdot 6\,\text{m}}$$

8) Thickness of Spherical Wall to Maintain given Temperature Difference Formula

a 🗁

$$t = \frac{1}{\frac{1}{r} - \frac{4 \cdot \pi \cdot k \cdot \left(T_i \cdot T_o\right)}{Q}} - r$$

$$0.07_{\,m} \, = \frac{1}{\frac{1}{1.4142_{\,m}} - \frac{4 \cdot 3.1416 \cdot 2_{\,w/(m^{*}K)} \cdot \left(\,305_{\,K} \, - \,300_{\,K}\,\right)}{3769.9111843_{\,W}}} \cdot \, 1.4142_{\,m}$$

9) Total Thermal Resistance of Spherical Wall of 2 Layers without Convection Formula

Evaluate Formula

$$\mathbf{r}_{tr} = \frac{\mathbf{r}_2 \cdot \mathbf{r}_1}{4 \cdot \boldsymbol{\pi} \cdot \mathbf{k}_1 \cdot \mathbf{r}_1 \cdot \mathbf{r}_2} + \frac{\mathbf{r}_3 \cdot \mathbf{r}_2}{4 \cdot \boldsymbol{\pi} \cdot \mathbf{k}_2 \cdot \mathbf{r}_2 \cdot \mathbf{r}_3}$$

Example with Units

$$3.5999 \text{ K/W} = \frac{6 \text{ m} \cdot 5 \text{ m}}{4 \cdot 3.1416 \cdot 0.001 \text{ W/(m^*K)} \cdot 5 \text{ m} \cdot 6 \text{ m}} + \frac{7 \text{ m} \cdot 6 \text{ m}}{4 \cdot 3.1416 \cdot 0.002 \text{ W/(m^*K)} \cdot 6 \text{ m} \cdot 7 \text{ m}}$$

10) Total Thermal Resistance of Spherical wall of 3 Layers without Convection Formula

Evaluate Formula 🕝

$$\boxed{ R_{tr} = \frac{r_2 \cdot r_1}{4 \cdot \pi \cdot k_1 \cdot r_1 \cdot r_2} + \frac{r_3 \cdot r_2}{4 \cdot \pi \cdot k_2 \cdot r_2 \cdot r_3} + \frac{r_4 \cdot r_3}{4 \cdot \pi \cdot k_3 \cdot r_3 \cdot r_4} }$$

Example with Units

$$3.9552 \text{ K/W} = \frac{6 \text{ m} \cdot 5 \text{ m}}{4 \cdot 3.1416 \cdot 0.001 \text{ W/(m*K)} \cdot 5 \text{ m} \cdot 6 \text{ m}} + \frac{7 \text{ m} \cdot 6 \text{ m}}{4 \cdot 3.1416 \cdot 0.002 \text{ W/(m*K)} \cdot 6 \text{ m} \cdot 7 \text{ m}} + \frac{8 \text{ m} \cdot 7 \text{ m}}{4 \cdot 3.1416 \cdot 0.004 \text{ W/(m*K)} \cdot 7 \text{ m} \cdot 8 \text{ m}}$$

11) Total Thermal Resistance of Spherical Wall with Convection on Both Side Formula 🗂

Evaluate Formula

$$R_{tr} = \frac{1}{4 \cdot \pi \cdot r_1^2 \cdot h_i} + \frac{r_2 \cdot r_1}{4 \cdot \pi \cdot k \cdot r_1 \cdot r_2} + \frac{1}{4 \cdot \pi \cdot r_2^2 \cdot h_o}$$

Example with Units

$$3.9571 \text{ K/W} = \frac{1}{4 \cdot 3.1416 \cdot 5 \text{ m}^{2} \cdot 0.001038 \text{ W/m}^{2} \text{ K}} + \frac{6 \text{ m} \cdot 5 \text{ m}}{4 \cdot 3.1416 \cdot 2 \text{ W/(m}^{*} \text{K}) \cdot 5 \text{ m} \cdot 6 \text{ m}} + \frac{1}{4 \cdot 3.1416 \cdot 6 \text{ m}^{2} \cdot 0.002486 \text{ W/m}^{2} \text{ K}}$$

Variables used in list of Conduction in Sphere Formulas above

- h Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- h_i Inner Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- h_o External Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- k Thermal Conductivity (Watt per Meter per K)
- k₁ Thermal Conductivity of 1st Body (Watt per Meter per K)
- **k₂** Thermal Conductivity of 2nd Body (Watt per Meter per K)
- k₃ Thermal Conductivity of 3rd Body (Watt per Meter per K)
- Q Heat Flow Rate (Watt)
- Q Heat Flow Rate of Wall of 2 Layers (Watt)
- r Radius of Sphere (Meter)
- r₁ Radius of 1st Concentric Sphere (Meter)
- · r₂ Radius of 2nd Concentric Sphere (Meter)
- r₃ Radius of 3rd Concentric Sphere (Meter)
- r4 Radius of 4th Concentric Sphere (Meter)
- r_{th} Thermal Resistance of Sphere Without Convection (Kelvin per Watt)
- R_{th} Thermal Resistance of Sphere (Kelvin per Watt)
- r_{tr} Sphere Thermal Resistance Without Convection (Kelvin per Wett)
- Rtr Sphere Thermal Resistance (Kelvin per Watt)
- t Thickness Of Conduction Sphere (Meter)
- T_i Inner Surface Temperature (Kelvin)
- To Outer Surface Temperature (Kelvin)

Constants, Functions, Measurements used in list of Conduction in Sphere Formulas above

- constant(s): pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Temperature in Kelvin (K)

 Temperature Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Thermal Resistance in Kelvin per Watt (K/W)
 Thermal Resistance Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))

Thermal Conductivity Unit Conversion

 Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m²*K)

Heat Transfer Coefficient Unit Conversion

Download other Important Conduction PDFs

- Important Conduction in Cylinder Formulas
- Important Conduction in Plane Wall Formulas
- Important Conduction in Sphere Formulas
- Important Conduction Shape Factors for Different
 Important Transient Heat Conduction Formulas
 Configurations Formulas
- Important Other shapes Formulas
- Important Steady State Heat Conduction with Heat Generation Formulas

Try our Unique Visual Calculators

Percentage growth

• 🛍 LCM calculator 🗁

Divide fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 10:09:11 AM UTC