Important Doppler Effect and Wavelength Changes Formulas PDF

1.4) Observed Frequency when Observer Moves Away from Source using Wavelength Formula

	ormula	Example with Units
Fo	$=\frac{c - V_o}{\lambda}$	$150{\rm Hz} = \frac{343{\rm m/s} - 283{\rm m/s}}{0.4{\rm m}}$

1.6) Observed Frequency when Observer Moves towards Source and Source Moves Away Formula

Formula	Example with Units	
$F_{o} = \left(\frac{c + V_{o}}{c + V_{source}}\right) \cdot f_{W}$	$295.9811 _{\text{Hz}} = \left(\frac{343 _{\text{m/s}} + 283 _{\text{m/s}}}{343 _{\text{m/s}} + 80 _{\text{m/s}}}\right) \cdot 200 _{\text{Hz}}$	

1.7) Observed Frequency when Observer Moves towards Source using Wavelength Formula

Evaluate Formula 🦳

Evaluate Formula

1.8) Observed Frequency when Source Moves Away from Observer Formula 🕝

FormulaExample with Units
$$F_o = f_W \cdot \frac{c}{c + V_{source}}$$
162.1749 Hz = 200 Hz $\cdot \frac{343 \text{ m/s}}{343 \text{ m/s} + 80 \text{ m/s}}$

1.9) Observed Frequency when Source Moves towards Observer Formula 🕝

FormulaExample with UnitsEvaluate Formula
$$F_o = f_W \cdot \frac{c}{c - V_{source}}$$
260.8365 Hz = 200 Hz $\cdot \frac{343 \text{ m/s}}{343 \text{ m/s} - 80 \text{ m/s}}$

1.10) Observed Frequency when Source Moves towards Observer and Observer Moves Away Formula

2) Wavelength Changes Formulas 🕝

2.1) Change in Wavelength due to Movement of Source Formula 🕝

2.2) Change in Wavelength given Angular Frequency Formula 🗂						
	Formula	Example with Units	Evaluate Formula 🕝			
$\lambda = 2 \cdot$	$\pi \cdot V_{source} \cdot \omega_{f}$	$0.4021\text{m} = 2 \cdot 3.1416 \cdot 80\text{m/s} \cdot 0.0008\text{Hz}$				

2.5) Effective Wavelength when Source Moves towards Observer Formula 🕝

Formula	Example with Units	
$\lambda_{effective} = \frac{c \text{ - } V_{source}}{f_W}$	$1.315\mathrm{m} = \frac{343\mathrm{m/s} - 80\mathrm{m/s}}{200\mathrm{Hz}}$	

Evaluate Formula 🕝

Variables used in list of Doppler Effect and Wavelength Changes Formulas above

- C Velocity of Sound (Meter per Second)
- **F**o Frequency Observed (*Hertz*)
- fw Wave Frequency (Hertz)
- T_W Time Period of Progressive Wave (Second)
- Vo Velocity Observed (Meter per Second)
- V_{source} Velocity of Source (Meter per Second)
- λ Wavelength (Meter)
- λ_{effective} Effective Wavelength (Meter)
- ω_f Angular Frequency (Hertz)

Constants, Functions, Measurements used in list of Doppler Effect and Wavelength Changes Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion

Download other Important Waves and Sound PDFs

- Important Doppler Effect and Wavelength Changes Formulas (
- Important Sound Propagation and Resonance Formulas ()
- Important Wave Properties and Equations Formulas

Try our Unique Visual Calculators

- 🔀 Percentage change 🕝
- LCM of two numbers

Image: Second Action Image:

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

10/15/2024 | 10:03:41 AM UTC

