Important Conduction, convection et rayonnement Formules PDF

Liste de 13

Important Conduction, convection et rayonnement Formules

1) Conductivité thermique compte tenu de l'épaisseur critique de l'isolant pour le cylindre Formule

Formule

Exemple avec Unités

 $10.18 \, \text{W/(m*K)} = 0.771212 \, \text{m} \cdot 13.2000021 \, \text{W/m*K}$

 $k_o = r_c \cdot h_o$

2) Échange de chaleur des corps noirs par rayonnement Formule

Formule

 $q = \varepsilon \cdot [Stefan-BoltZ] \cdot A_{cs} \cdot (T_1^4 - T_2^4)$

Exemple avec Unités

 $77.7041 \text{w/m}^2 \, = \, 0.95 \cdot 5.7 \text{E-8} \cdot 41 \, \text{m}^2 \, \cdot \left(\, 101.01 \, \text{k}^{-4} - \, 91.114 \, \text{k}^{-4} \right)$

3) Échange de chaleur par rayonnement dû à la disposition géométrique Formule 🗂

Formule

Évaluer la formule 🕝

Évaluer la formule (

Évaluer la formule 🦳

 $q = \epsilon \cdot A_{cs} \cdot [Stefan\text{-BoltZ}] \cdot SF \cdot \left(\left. T_1^{-4} - T_2^{-4} \right) \right.$

Exemple avec Unités

 $77.7042\,w/m^2\,=\,0.95\cdot41\,{_{m^2}}\cdot5.7E\text{--}8\cdot1.000001\cdot\left(\,101.01\,\kappa^{\,\,4}\cdot\,91.114\,\kappa^{\,\,4}\right)$

4) Émittance de surface corporelle non idéale Formule 🕝

Formule

Exemple avec Unités

Évaluer la formule 🕝

Évaluer la formule 🕝

 $e = \epsilon \cdot [Stefan-BoltZ] \cdot T_W^4$

 $466.1591 \,\text{w/m}^2 = 0.95 \cdot 5.7 \,\text{E-8} \cdot 305 \,\text{K}^4$

5) Épaisseur critique d'isolation pour le cylindre Formule 🗂

Formule

Exemple avec Unités

 $r_c = \frac{k_o}{h_t}$ 0.7712 m = $\frac{10.18 \text{ W/(m*K)}}{13.2 \text{ W/m}^{2*K}}$

Formule

Exemple avec Unités

Évaluer la formule (

Évaluer la formule [

Évaluer la formule (

$$q = -\frac{k_0}{t} \cdot \left(T_{w2} - T_{w1} \right)$$

Formule

 $77.7099 \,\mathrm{W/m^2} = -\frac{10.18 \,\mathrm{W/(m^*K)}}{0.131 \,\mathrm{m}} \cdot \left(299 \,\mathrm{K} - 300 \,\mathrm{K}\right)$

7) Loi de refroidissement de Newton Formule [7]

Exemple avec Unités $q = \overline{h_t \cdot \left(T_w - T_f \right)} \boxed{ 77.7 \text{ w/m}^2 = 13.2 \text{ w/m}^2 \cdot \text{K} \cdot \left(305 \text{ K} - 299.113636 \text{ K} \right) }$

8) Processus convectifs Coefficient de transfert de chaleur Formule 🕝

Formule

Exemple avec Unités

 $q = h_t \cdot \left(T_w - T_{aw} \right) \ \middle| \ | \ 77.7005 \text{w/m}^2 = 13.2 \text{w/m}^2 \text{K} \cdot \left(305 \text{K} - 299.1136 \text{K} \right)$

9) Résistance thermique dans le transfert de chaleur par convection Formule [7]

Formule

Évaluer la formule

 $R_{th} = \frac{1}{A_e \cdot h_{co}} \left| \quad \right| \ 0.007 \, \text{k/w} \ = \frac{1}{11.1 \, \text{m}^2 \, \cdot 12.870012 \, \text{W/m}^{2*} \text{K}}$

10) Résistance thermique en conduction Formule [7]

Formule

Évaluer la formule [

 $R_{th} = \frac{L}{k_o \cdot A_{cs}} \left| \quad \right| \ 0.007 \, \text{k/w} \ = \frac{2.92166 \, \text{m}}{10.18 \, \text{W/(m*K)} \, \cdot 41 \, \text{m}^2}$

11) Transfert de chaleur Formule 🕝

Exemple avec Unités

Évaluer la formule

 $Q_{c} = \frac{T_{vd}}{R_{..}} \left| 48.1005 w \right| = \frac{0.3367035 \kappa}{0.007 \kappa/w}$

12) Transfert de chaleur par conduction à la base Formule 🕝

Évaluer la formule 🕝

 $Q_{fin} = \left(k_o \cdot A_{cs} \cdot P_f \cdot h\right)^{0.5} \cdot \left(t_o - t_a\right)$

Exemple avec Unités

 $6498.2461 w = \left(10.18 \text{W/(m*K)} \cdot 41 \text{m}^2 \cdot 0.046 \text{m} \cdot 30.17 \text{W/m}^2 \text{*K}\right)^{0.5} \cdot \left(573 \text{K} - 303 \text{K}\right)$

13) Transfert de chaleur selon la loi de Fourier Formule 🕝

Évaluer la formule 🕝

Formule

Exemple avec Unités $48.1005\,\text{W} \; = \; - \left(\; 10.18\,\text{W}/\text{(m*K)} \; \cdot \; 0.1314747\,\text{m}^2 \; \cdot \frac{-105\,\text{K}}{2.92166\,\text{m}} \right)$

Variables utilisées dans la liste de Conduction, convection et rayonnement Formules ci-dessus

- A_{cs} Surface de la section transversale (Mètre carré)
- A_{cs} Section transversale (Mètre carré)
- Ae Surface exposée (Mètre carré)
- A_s Surface de flux de chaleur (Mètre carré)
- e Émittance de surface radiante réelle (Watt par mètre carré)
- h Coefficient de transfert de chaleur par convection (Watt par mètre carré par Kelvin)
- h_{co} Coefficient de transfert de chaleur par convection (Watt par mètre carré par Kelvin)
- h_o Coefficient de transfert de chaleur à la surface extérieure (Watt par mètre carré par Kelvin)
- h_t Coefficient de transfert de chaleur (Watt par mètre carré par Kelvin)
- k_o Conductivité thermique des ailerons (Watt par mètre par K)
- L Épaisseur du corps (Mètre)
- **P**_f Périmètre de la nageoire (Mètre)
- q Flux de chaleur (Watt par mètre carré)
- q Flux de chaleur (Watt par mètre carré)
- Q_c Flux de chaleur à travers un corps (Watt)
- Q_{fin} Taux de transfert de chaleur par conduction (Watt)
- rc Épaisseur critique de l'isolation (Mètre)
- R_{th} Résistance thermique (kelvin / watt)
- SF Facteur de forme
- t Épaisseur de la paroi (Mètre)
- T₁ Température de surface 1 (Kelvin)
- T₂ Température de surface 2 (Kelvin)
- t_a Température ambiante (Kelvin)
- T_{aw} Température de récupération (Kelvin)
- **T**_f Température du fluide caractéristique (Kelvin)

Constantes, fonctions, mesures utilisées dans la liste des Conduction, convection et rayonnement Formules ci-dessus

- constante(s): [Stefan-BoltZ], 5.670367E-8
 Stefan-Boltzmann Constant
- La mesure: Longueur in Mètre (m)
 Longueur Conversion d'unité
- La mesure: Température in Kelvin (K)
 Température Conversion d'unité
- La mesure: Zone in Mètre carré (m²)

 Zone Conversion d'unité
- La mesure: Du pouvoir in Watt (W)
 Du pouvoir Conversion d'unité
- La mesure: La différence de température in Kelvin (K)
 La différence de température Conversion d'unité
- La mesure: Résistance thermique in kelvin / watt (K/W)

Résistance thermique Conversion d'unité
La mesure: Conductivité thermique in Watt par

mètre par K (W/(m*K))

Conductivité thermique Conversion d'unité

 La mesure: Densité de flux thermique in Watt par mètre carré (W/m²)

Densité de flux thermique Conversion d'unité

 La mesure: Coefficient de transfert de chaleur in Watt par mètre carré par Kelvin (W/m²*K)
 Coefficient de transfert de chaleur Conversion d'unité

- $\mathbf{t_o}$ Température de base (Kelvin)
- T_{vd} Différence de potentiel thermique (Kelvin)
- T_w Température de surface (Kelvin)
- T_w Température de surface (Kelvin)
- T_{w1} Température de la paroi 1 (Kelvin)
- T_{w2} Température du mur 2 (Kelvin)
- ΔT Différence de température (Kelvin)
- ε Émissivité

Téléchargez d'autres PDF Important Thermodynamique

- Important Génération d'entropie Formules (
- Important Facteurs de thermodynamique Formules
- à chaleur Formules 📑
- Important Gaz idéal Formules

- Important Processus isentropique Formules ()
- Important Relations de pression Formules
- Important Moteur thermique et pompe Important Paramètres de réfrigération Formules (
 - Important Efficacité thermique Formules (

Essayez nos calculatrices visuelles uniques

- Pourcentage du nombre
- Calculateur PPCM

Fraction simple 🗂

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

12/5/2024 | 4:34:53 AM UTC