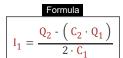
## Important Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas PDF




**Examples** with Units

## List of 19

Important Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas

## 1) Clark's Method for IUH Formulas (

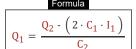
1.1) Inflow at Beginning of Time Interval for Routing of Time-Area Histogram Formula 🕝



 $I_{1} = \frac{Q_{2} - (C_{2} \cdot Q_{1})}{2 \cdot C_{1}} = \frac{64 \, \text{m}^{3}/\text{s} - (0.523 \cdot 48 \, \text{m}^{3}/\text{s})}{2 \cdot 0.429}$ 

1.2) Inflow Rate between Inter-Isochrone Area Formula




Example with Units  $I = 2.78 \cdot \frac{A_{r}}{\Lambda t} \qquad 27.8 \,\mathrm{m}^{3}/\mathrm{s} = 2.78 \cdot \frac{50 \,\mathrm{m}^{2}}{5 \,\mathrm{s}}$ 

1.3) Inter-Isochrone Area given Inflow Formula 🕝



 $A_{r} = I \cdot \frac{\Delta t}{2.78} \left| \quad 50.3597 \, m^{2} \, = \, 28 \, m^{3}/s \, \cdot \frac{5 \, s}{2.78} \right|$ 

1.4) Outflow at Beginning of Time Interval for Routing of Time-Area Histogram Formula 🕝



Example with Units  $Q_1 = \frac{Q_2 - (2 \cdot C_1 \cdot I_1)}{C_2} \left[ 32.1415 \,\mathrm{m}^3/\mathrm{s} = \frac{64 \,\mathrm{m}^3/\mathrm{s} - (2 \cdot 0.429 \cdot 55 \,\mathrm{m}^3/\mathrm{s})}{0.523} \right]$ 

1.5) Outflow at End of Time Interval for Routing of Time-Area Histogram Formula 🕝 Evaluate Formula (

Evaluate Formula

Evaluate Formula

Evaluate Formula (

Evaluate Formula 🕝

## 1.6) Time Interval at Inter-Isochrone Area given Inflow Formula 🕝

Example with Units

Evaluate Formula

$$\Delta t = 2.78 \cdot \frac{A_r}{I}$$

 $\Delta t = 2.78 \cdot \frac{A_r}{I}$  4.9643 s = 2.78 \cdot \frac{50 \text{ m}^2}{28 \text{ m}^3/s}

## 2) Nash's Conceptual Model Formulas

#### 2.1) Equation for Inflow from Continuity Equation Formula 🕝

Formula Example with Units 
$$I = K \cdot R_{dq/dt} + Q \qquad 28\,\text{m}^3/\text{s} = 4 \cdot 0.75 \, + \, 25\,\text{m}^3/\text{s}$$

Evaluate Formula

Evaluate Formula (

# 2.2) Ordinates of Instantaneous Unit Hydrograph representing IUH of Catchment Formula 🕝

Formula

$$U_{t} = \left(\frac{1}{\left(\left(n-1\right)!\right)\cdot\left(K^{n}\right)}\right)\cdot\left(\Delta t^{n-1}\right)\cdot\exp\left(-\frac{\Delta t}{n}\right)$$

Example with Units

$$0.0369 \, \text{cm/h} = \left(\frac{1}{\left(\left(3-1\right)!\right) \cdot \left(4^{3}\right)}\right) \cdot \left(5^{\, \text{s}^{\, 3-1}}\right) \cdot \exp\left(-\frac{5^{\, \text{s}}}{3}\right)$$

#### 2.3) Outflow in First Reservoir Formula C

Formula

Evaluate Formula

$$Q_{n} = \left(\frac{1}{K}\right) \cdot \exp\left(-\frac{\Delta t}{K}\right)$$

$$Q_{n} = \left(\frac{1}{K}\right) \cdot \exp\left(-\frac{\Delta t}{K}\right)$$

$$0.0716 \, \text{m}^{3}/\text{s} = \left(\frac{1}{4}\right) \cdot \exp\left(-\frac{5 \, \text{s}}{4}\right)$$

#### 2.4) Outflow in nth Reservoir Formula C

$$Q_{n} = \left(\frac{1}{\left((n-1)!\right) \cdot \left(K^{n}\right)}\right) \cdot \left(\Delta t^{n-1}\right) \cdot \exp\left(-\frac{\Delta t}{n}\right)$$

$$0.0369 \,\mathrm{m}^3/\mathrm{s} = \left(\frac{1}{\left(\left(3-1\right)!\right)\cdot\left(4^3\right)}\right)\cdot\left(5\,\mathrm{s}^{3-1}\right)\cdot\exp\left(-\frac{5\,\mathrm{s}}{3}\right)$$

## 2.5) Outflow in Second Reservoir Formula [7]

Formula

 $Q_{n} = \left(\frac{1}{\kappa^{2}}\right) \cdot \Delta t \cdot \exp\left(-\frac{\Delta t}{K}\right) \left| \quad \right| \quad 0.0895 \, \text{m}^{3}/\text{s} = \left(\frac{1}{4^{2}}\right) \cdot 5 \, \text{s} \cdot \exp\left(-\frac{5 \, \text{s}}{4}\right) \left| \quad \right|$ 

Example with Units

Evaluate Formula (

Evaluate Formula

2.6) Outflow in Third Reservoir Formula [7]

 $Q_{n} = \left(\frac{1}{2}\right) \cdot \left(\frac{1}{K^{3}}\right) \cdot \left(\Delta t^{2}\right) \cdot \exp\left(-\frac{\Delta t}{K}\right)$ 

Example with Units  $0.056\,\mathrm{m}^3/\mathrm{s} = \left(\frac{1}{2}\right) \cdot \left(\frac{1}{4^3}\right) \cdot \left(5\,\mathrm{s}^2\right) \cdot \exp\left(-\frac{5\,\mathrm{s}}{4}\right)$ 

2.7) Determination of n and S of Nash's Model Formulas 🕝

2.7.1) First Moment of DRH about Time Origin divided by Total Direct Runoff Formula 🕝

 $M_{Q1} = (n \cdot K) + M_{I1}$  | 22 = (3 · 4) + 10

Evaluate Formula

2.7.2) First Moment of ERH about Time Origin divided by Total Effective Rainfall Formula 🕝 Evaluate Formula (

 $M_{I1} = M_{Q1} - (n \cdot K)$   $10 = 22 - (3 \cdot 4)$ 

2.7.3) First Moment of ERH given Second Moment of DRH Formula Evaluate Formula 🕝

 $M_{I1} = \frac{M_{Q2} - M_{I2} - (n \cdot (n+1) \cdot K^{2})}{2 \cdot n \cdot K} \left[ 10 = \frac{448 - 16 - (3 \cdot (3+1) \cdot 4^{2})}{2 \cdot 3 \cdot 4} \right]$ 

2.7.4) First Moment of Instantaneous Unit Hydrograph or IUH Formula C

Evaluate Formula C

2.7.5) Second Moment of DRH about Time Origin divided by Total Direct Runoff Formula 🕝

$$\boldsymbol{M}_{\text{Q2}} = \left( \, \boldsymbol{n} \cdot \left( \, \boldsymbol{n} + 1 \, \right) \cdot \boldsymbol{K}^{2} \right) + \left( \, \boldsymbol{2} \cdot \boldsymbol{n} \cdot \boldsymbol{K} \cdot \boldsymbol{M}_{\text{I1}} \, \right) + \, \boldsymbol{M}_{\text{I2}}$$

$$448 = \left(3 \cdot \left(3 + 1\right) \cdot 4^{2}\right) + \left(2 \cdot 3 \cdot 4 \cdot 10\right) + 16$$

2.7.6) Second Moment of ERH about Time Origin divided by Total Excess Rainfall Formula 🕝

$$M_{I2} = M_{Q2} - \left(n \cdot (n + 1) \cdot K^{2}\right) - \left(2 \cdot n \cdot K \cdot M_{I1}\right)$$

$$16 = 448 - \left(3 \cdot \left(3 + 1\right) \cdot 4^{2}\right) - \left(2 \cdot 3 \cdot 4 \cdot 10\right)$$

2.7.7) Second Moment of Instantaneous Unit Hydrograph or IUH Formula 🕝

$$M_2 = n \cdot (n+1) \cdot K^2$$
  $192 = 3 \cdot (3+1) \cdot 4^2$ 

Evaluate Formula (

Evaluate Formula

Evaluate Formula C

### Variables used in list of Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas above

- A<sub>r</sub> Inter-Isochrone Area (Square Meter)
- C<sub>1</sub> Coefficient C1 in Muskingum Method of Routing
- C<sub>2</sub> Coefficient C2 in Muskingum Method of Routing
- I Inflow Rate (Cubic Meter per Second)
- Inflow at the Beginning of Time Interval (Cubic Meter per Second)
- K Constant K
- M<sub>1</sub> First Moment of the IUH
- M<sub>2</sub> Second Moment of the IUH
- M<sub>I1</sub> First Moment of the ERH
- M<sub>12</sub> Second Moment of the ERH
- M<sub>O1</sub> First Moment of the DRH
- M<sub>O2</sub> Second Moment of the DRH
- n Constant n
- Q Outflow Rate (Cubic Meter per Second)
- Q<sub>1</sub> Outflow at the Beginning of Time Interval (Cubic Meter per Second)
- Q<sub>2</sub> Outflow at the End of Time Interval (Cubic Meter per Second)
- Qn Outflow in the Reservoir (Cubic Meter per Second)
- R<sub>da/dt</sub> Rate of Change of Discharge
- U<sub>t</sub> Ordinates of Unit Hydrograph (Centimeter per Hour)
- Δt Time Interval (Second)

## Constants, Functions, Measurements used in list of Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas above

- Functions: exp, exp(Number) n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Centimeter per Hour (cm/h) Speed Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion 🕝

#### **Download other Important Flood Routing PDFs**

- Important Basic Equations of Flood Routing Formulas (\*)
- Important Clark's Method and Nash Model for IUH (Instantaneous Unit
- Hydrograph) Formulas 🗂
- Important Hydrologic Routing Formulas

## **Try our Unique Visual Calculators**

- M Percentage increase
- GHCF calculator

Mixed fraction

Please SHARE this PDF with someone who needs it!

#### This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 6:27:54 AM UTC