Wichtig Abflussfluss und Peak-Algorithmus Formeln **PDF**

Beispiele mit Einheiten

Formeln

Liste von 13

Wichtig Abflussfluss und Peak-Algorithmus Formeln

Formel auswerten [7]

Formel auswerten

Formel auswerten

Formel auswerten

1) Fluss-Dauer-Kurve Formeln (

1.1) Anzahl der Datenpunkte bei gegebener prozentualer Wahrscheinlichkeit der Durchflussgröße Formel

$$N = \left(m \cdot \frac{100}{P_p}\right) - 1$$

$$26.027 = \left(4 \cdot \frac{100}{14.8}\right) - 1$$

$$26.027 = \left(4 \cdot \frac{100}{14.8}\right) - 1$$

1.2) Bestellnummer des Abflusses bei gegebener prozentualer Wahrscheinlichkeit der Durchflussgröße Formel

$$m = P_p \cdot \frac{N+1}{100}$$

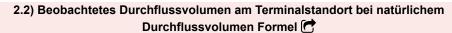
$$m = P_p \cdot \frac{N+1}{100}$$
 3.996 = 14.8 \cdot \frac{26+1}{100}

1.3) Prozentuale Wahrscheinlichkeit der Strömungsgröße Formel C

$$P_{p} = \left(\frac{m}{N+1}\right) \cdot 100$$

$$P_{p} = \left(\frac{m}{N+1}\right) \cdot 100$$
 $14.8148 = \left(\frac{4}{26+1}\right) \cdot 100$

2) Natürliche Strömung Formeln 🕝


2.1) Änderung des Speichervolumens Formel 🕝

Formel

$$\Delta Sv = R_N - R_o + V_r - V_d - E_M - F_x$$

Beispiel mit Einheiten

$$20 = 174 \, \text{m}^3/\text{s} - 50 \, \text{m}^3/\text{s} + 10 \, \text{m}^3/\text{s} - 12 \, \text{m}^3/\text{s} - 2 - 100$$

Formel auswerten

Formel auswerten

Formel auswerten [

Formel auswerten [

Formel auswerten

Formel

$$R_{o} = R_{N} + V_{r} - V_{d} - E_{M} - F_{x} - \Delta Sv$$

Beispiel mit Einheiten

$$50\,{\rm m}^3/s\ =\ 174\,{\rm m}^3/s\ +\ 10\,{\rm m}^3/s\ -\ 12\,{\rm m}^3/s\ -\ 2\ -\ 100\ -\ 20$$

2.3) Natürliches Durchflussvolumen Formel

Formel

$$R_{N} = (R_{o} - V_{r}) + V_{d} + E_{M} + F_{x} + \Delta Sv$$

Beispiel mit Einheiten

$$174 \,\mathrm{m}^3/\mathrm{s} = (50 \,\mathrm{m}^3/\mathrm{s} - 10 \,\mathrm{m}^3/\mathrm{s}) + 12 \,\mathrm{m}^3/\mathrm{s} + 2 + 100 + 20$$

2.4) Nettoexport von Wasser aus dem Becken Formel C

Formel

$$F_{x} = R_{N} - R_{o} + V_{r} - V_{d} - E_{M} + \Delta Sv$$

Beispiel mit Einheiten

$$140 = 174 \,\mathrm{m}^3/\mathrm{s} - 50 \,\mathrm{m}^3/\mathrm{s} + 10 \,\mathrm{m}^3/\mathrm{s} - 12 \,\mathrm{m}^3/\mathrm{s} - 2 + 20$$

2.5) Nettoverdunstungsverluste aus dem Reservoir am Strom Formel [

$$E_{M} = R_{N} - R_{o} + V_{r} - V_{d} - F_{x} - \Delta Sv$$

Beispiel mit Einheiten

$$2 = 174 \,\mathrm{m}^3/\mathrm{s} - 50 \,\mathrm{m}^3/\mathrm{s} + 10 \,\mathrm{m}^3/\mathrm{s} - 12 \,\mathrm{m}^3/\mathrm{s} - 100 - 20$$

2.6) Volumen aus dem Stream umgeleitet Formel 🕝

$$V_d = R_N - R_o + V_r - E_M - F_x - \Delta Sv$$

Beispiel mit Einheiten

$$12\,\mathrm{m}^3/\mathrm{s} = 174\,\mathrm{m}^3/\mathrm{s} - 50\,\mathrm{m}^3/\mathrm{s} + 10\,\mathrm{m}^3/\mathrm{s} - 2 - 100 - 20$$

2.7) Volumen des Rückflusses Formel

Formel

$$V_r = -R_N + R_o + V_d + E_M + F_x + \Delta Sv$$

Beispiel mit Einheiten

$$10 \,\mathrm{m}^3/\mathrm{s} = -174 \,\mathrm{m}^3/\mathrm{s} + 50 \,\mathrm{m}^3/\mathrm{s} + 12 \,\mathrm{m}^3/\mathrm{s} + 2 + 100 + 20$$

3) Sequentieller Peak-Algorithmus Formeln 🕝

3.1) Abflussvolumen bei gegebenem Nettoflussvolumen Formel 🗂

Formel $D_i = x_i - V_f$

 $4.9\,\mathrm{m}^3/\mathrm{s} = 15\,\mathrm{m}^3/\mathrm{s} - 10.1\,\mathrm{m}^3/\mathrm{s}$

Formel auswerten

3.2) Nettoflussvolumen Formel

Formel Beispiel mit Einheiten
$$V_f = x_i - D_i$$

$$10 \, \text{m}^3/\text{s} = 15 \, \text{m}^3/\text{s} - 5 \, \text{m}$$

 $10\,\mathrm{m}^3/\mathrm{s} = 15\,\mathrm{m}^3/\mathrm{s} - 5\,\mathrm{m}^3/\mathrm{s}$

Formel auswerten [

Formel auswerten

3.3) Zuflussvolumen bei gegebenem Nettoflussvolumen Formel 🕝

Formel

Beispiel mit Einheiten

Formel auswerten 🕝

 $x_i = V_f + D_i$

 $15.1\,\mathrm{m}^3/\mathrm{s} = 10.1\,\mathrm{m}^3/\mathrm{s} + 5\,\mathrm{m}^3/\mathrm{s}$

In der Liste von Abflussfluss und Peak-Algorithmus Formeln oben verwendete Variablen

- **D**_i Abflussvolumen (Kubikmeter pro Sekunde)
- E_M Nettoverdunstungsverluste
- F_x Nettoexport von Wasser aus dem Becken
- m Auftragsnummer der Entladung
- N Anzahl der Datenpunkte
- P_p Prozentuale Wahrscheinlichkeit
- R_N Natürliches Durchflussvolumen (Kubikmeter pro Sekunde)
- R_o Beobachtetes Durchflussvolumen (Kubikmeter pro Sekunde)
- V_d Volumen aus dem Stream umgeleitet (Kubikmeter pro Sekunde)
- V_f Nettodurchflussvolumen (Kubikmeter pro Sekunde)
- V_r Volumen des Rückflusses (Kubikmeter pro Sekunde)
- Xi Zuflussvolumen (Kubikmeter pro Sekunde)
- ΔSv Änderung der Speichervolumina

Konstanten, Funktionen, Messungen, die in der Liste von Abflussfluss und Peak-Algorithmus Formeln oben verwendet werden

 Messung: Volumenstrom in Kubikmeter pro Sekunde (m³/s)

Volumenstrom Einheitenumrechnung

Laden Sie andere Wichtig Abfließen-PDFs herunter

 Wichtig Abflussdichte und Formfaktor
 Wichtig Abflussfluss und Peak-Formeln
 Algorithmus Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- Prozentualer Wachstum
- KGV rechner

• Image: Dividiere bruch

The state of th

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 6:20:51 AM UTC