Important Indirect Methods of Streamflow Measurement Formulas PDF

Formulas Examples with Units

List of 33

Important Indirect Methods of Streamflow Measurement Formulas

Evaluate Formula

Evaluate Formula (

Evaluate Formula 🕝

Evaluate Formula C

1) Flow Measuring Structures Formulas (7)

1.1) Discharge at Structure Formula

Formula

Example with Units

 $Q_f = k \cdot (H^{n_{system}})$ 35.9632 m³/s = 2 · (3 m^{2.63})

1.2) Free Flow Discharge under Head using Submerged Flow over Weir Formula 🕝

 $Q_1 = \frac{Q_S}{\left(1 - \left(\frac{H_2}{H_1}\right)^{n_{head}}\right)^{0.385}} \left| \quad \left| \quad 20.0067\,\text{m}^3/\text{s} \right. = \frac{19\,\text{m}^3/\text{s}}{\left(1 - \left(\frac{5\,\text{m}}{10.01\,\text{m}}\right)^{2.99\,\text{m}}\right)^{0.385}} \right|$

1.3) Head over Weir given Discharge Formula 🕝

Example with Units

 $H = \left(\frac{Q_f}{k}\right)^{\frac{1}{n_{system}}} \left| \quad 2.8002 \, \text{m} \right| = \left(\frac{30.0 \, \text{m}^3/\text{s}}{2}\right)^{\frac{1}{2.63}}$

1.4) Submerged Flow over Weir using Villemonte Formula Formula 🕝

Formula

Example with Units

 $Q_{S} = Q_{1} \cdot \left(1 - \left(\frac{H_{2}}{H_{1}}\right)^{n_{head}}\right)^{0.385} \left| \quad | \quad | 18.9937 \, \text{m}^{3}/\text{s} \right| = 20 \, \text{m}^{3}/\text{s} \cdot \left(1 - \left(\frac{5 \, \text{m}}{10.01 \, \text{m}}\right)^{2.99 \, \text{m}}\right)^{0.385} \right|$

2) Slope Area Method Formulas 🕝

2.1) Eddy Loss Formula 🕝

Formula

$$h_{e} = (h_{1} - h_{2}) + (\frac{V_{1}^{2}}{2 \cdot g} - \frac{V_{2}^{2}}{2 \cdot g}) - h_{f}$$

Example with Units

$$15.9694 = \left(50_{\text{m}} - 20_{\text{m}}\right) + \left(\frac{10_{\text{m/s}}^{2}}{2 \cdot 9.8_{\text{m/s}^{2}}} - \frac{9_{\text{m/s}}^{2}}{2 \cdot 9.8_{\text{m/s}^{2}}}\right) - 15$$

2.2) Frictional Loss Formula

$$h_f = (h_1 - h_2) + (\frac{V_1^2}{2 \cdot g} - \frac{V_2^2}{2 \cdot g}) - h_e$$

$$30.4334 = \left(50 \,\mathrm{m} - 20 \,\mathrm{m}\right) + \left(\frac{10 \,\mathrm{m/s}^2}{2 \cdot 9.8 \,\mathrm{m/s}^2} - \frac{9 \,\mathrm{m/s}^2}{2 \cdot 9.8 \,\mathrm{m/s}^2}\right) - 0.536$$

2.3) Head loss in Reach Formula C

Formula

$$h_1 = Z_1 + y_1 + \left(\frac{V_1^2}{2 \cdot g}\right) - Z_2 - y_2 - \frac{V_2^2}{2 \cdot g}$$

Example with Units

$$2.4694 \,\mathrm{m} = 11.5 \,\mathrm{m} + 14 \,\mathrm{m} + \left(\frac{10 \,\mathrm{m/s}^2}{2 \cdot 9.8 \,\mathrm{m/s^2}}\right) - 11 \,\mathrm{m} - 13 \,\mathrm{m} - \frac{9 \,\mathrm{m/s}^2}{2 \cdot 9.8 \,\mathrm{m/s^2}}$$

2.4) Non Uniform Flow Formulas

2.4.1) Area of Channel with known Conveyance of Channel at Section 1 Formula 🗂

Formula Example with Units
$$A_{1} = \frac{K_{1} \cdot n}{R_{1}^{\frac{2}{3}}} \qquad 494.221 \, m^{2} = \frac{1824 \cdot 0.412}{1.875 \, m^{\frac{2}{3}}}$$

Evaluate Formula C

Evaluate Formula

Evaluate Formula

Evaluate Formula [

2.4.2) Area of Channel with known Conveyance of Channel at Section 2 Formula 🕝

Example with Units

Evaluate Formula (

 $A_2 = \frac{K_2 \cdot n}{R_2^{\frac{2}{3}}}$ $477.7378 \, m^2 = \frac{1738 \cdot 0.412}{1.835 \, m^{\frac{2}{3}}}$

2.4.3) Average Conveyance of Channel for Non-Uniform Flow Formula [Evaluate Formula

Formula Example $K_{avg} = \sqrt{K_1 \cdot K_2}$ $1780.4808 = \sqrt{1824 \cdot 1738}$

Evaluate Formula

2.4.4) Average Energy Slope given Average Conveyance for Non-Uniform Flow Formula (

 $S_{\text{favg}} = \frac{Q^2}{\kappa^2} \left[0.1406 = \frac{3.0 \,\text{m}^3/\text{s}^2}{8^2} \right]$

2.4.5) Average Energy Slope given Frictional Loss Formula 🕝

Formula Example with Units $S_{favg} = \frac{h_f}{L} \qquad 0.15 = \frac{15}{100\,\mathrm{m}}$

Evaluate Formula

2.4.6) Conveyance of Channel at End Sections at 1 Formula C

Formula

Example with Uni $K_1 = \left(\frac{1}{n}\right) \cdot A_1 \cdot R_1^{\frac{2}{3}}$ $1823.1843 = \left(\frac{1}{0.412}\right) \cdot 494 \, m^2 \cdot 1.875 \, m^{\frac{2}{3}}$ Evaluate Formula (

2.4.7) Conveyance of Channel at End Sections at 2 Formula C

Example with Units $K_2 = \left(\frac{1}{n}\right) \cdot A_2 \cdot R_2^{\frac{2}{3}} \qquad 1738.9539 = \left(\frac{1}{0.412}\right) \cdot 478 \, \text{m}^2 \cdot 1.835 \, \text{m}^{\frac{2}{3}}$ Evaluate Formula C

2.4.8) Conveyance of Channel for Non-Uniform Flow for End Section Formula C

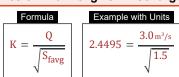
 $K_2 = \frac{K_{avg}^2}{K_1}$ $1737.0614 = \frac{1780^2}{1824}$

Evaluate Formula (

2.4.9) Conveyance of Channel for Non-Uniform Flow for End Sections Formula

Formula Example
$$K_{1} = \frac{K_{avg}^{2}}{K_{2}} \qquad 1823.015 = \frac{1780^{2}}{1738}$$

2.4.10) Conveyance of Channel given Discharge in Non-Uniform Flow Formula

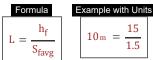

Evaluate Formula (

Evaluate Formula (

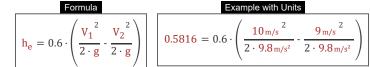
Evaluate Formula (

Evaluate Formula 🕝

Evaluate Formula (


2.4.11) Discharge in Non-Uniform Flow by Conveyance Method Formula

2.4.12) Frictional Loss given Average Energy Slope Formula

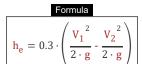


2.4.13) Length of Reach given Average Energy Slope for Non-Uniform Flow Formula

2.4.14) Eddy Loss Formulas 🗂

2.4.14.1) Eddy Loss for Abrupt Contraction Channel Transition Formula

2.4.14.2) Eddy Loss for Abrupt Expansion Channel Transition Formula



2.4.14.3) Eddy Loss for Gradual Contraction Channel Transition Formula C

$$h_{e} = 0.1 \cdot \left(\frac{{V_{1}}^{2}}{2 \cdot g} - \frac{{V_{2}}^{2}}{2 \cdot g} \right) \qquad 0.0969 = 0.1 \cdot \left(\frac{10 \, \text{m/s}}{2 \cdot 9.8 \, \text{m/s}^{2}} - \frac{9 \, \text{m/s}}{2 \cdot 9.8 \, \text{m/s}^{2}} \right)$$

Example with Units
$$\frac{10 \, \text{m/s}^2}{10 \, \text{m/s}^2} = \frac{9 \, \text{m}}{10 \, \text{m/s}^2}$$

Evaluate Formula (

 $h_{e} = 0.3 \cdot \left(\frac{V_{1}^{2}}{2 \cdot g} - \frac{V_{2}^{2}}{2 \cdot g} \right) \left| \quad 0.2908 = 0.3 \cdot \left(\frac{10 \, \text{m/s}^{2}}{2 \cdot 9.8 \, \text{m/s}^{2}} - \frac{9 \, \text{m/s}^{2}}{2 \cdot 9.8 \, \text{m/s}^{2}} \right) \right|$

Evaluate Formula

Evaluate Formula (

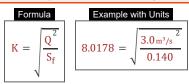
2.4.14.5) Eddy Loss for Non-uniform Flow Formula C

Formula
$$h_e = K_e \cdot \left(\frac{V_1^2}{2 \cdot g} - \frac{V_2^2}{2 \cdot g} \right)$$

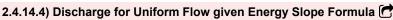
Example with Units $h_{e} = K_{e} \cdot \left(\frac{V_{1}^{2}}{2 \cdot g} - \frac{V_{2}^{2}}{2 \cdot g} \right) \left| \quad 0.95 = 0.98 \cdot \left(\frac{10 \, \text{m/s}^{2}}{2 \cdot 9.8 \, \text{m/s}^{2}} - \frac{9 \, \text{m/s}^{2}}{2 \cdot 9.8 \, \text{m/s}^{2}} \right) \right|$

2.4.14) Uniform Flow Formulas (

2.4.14.1) Area of Channel with known Conveyance of Channel Formula C

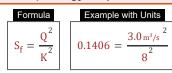

Example with Units $A = \frac{K}{r^{\frac{2}{3}}} \cdot \left(\frac{1}{n}\right) \left| 40.6615 \,\mathrm{m}^2 \right| = \frac{8}{0.33 \,\mathrm{m}^{\frac{2}{3}}} \cdot \left(\frac{1}{0.412}\right)$ Evaluate Formula (

2.4.14.2) Conveyance of Channel Formula C


Formula
$$K = \left(\frac{1}{n}\right) \cdot A \cdot r_{H}^{\frac{2}{3}}$$

Example with Units $K = \left(\frac{1}{n}\right) \cdot A \cdot r_{H}^{\frac{2}{3}} \left| 13.9089 = \left(\frac{1}{0.412}\right) \cdot 12.0 \,\mathrm{m}^{2} \cdot 0.33 \,\mathrm{m}^{\frac{2}{3}} \right|$

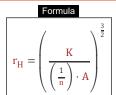
2.4.14.3) Conveyance of Channel given Energy Slope Formula C

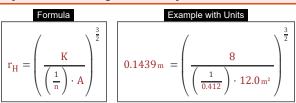

Evaluate Formula (

Example with Units $2.9933\,\mathrm{m}^3/\mathrm{s} = 8 \cdot \sqrt{0.140}$ Evaluate Formula (

2.4.14.5) Energy Slope for Uniform Flow Formula [7]

Evaluate Formula


2.4.14.6) Frictional Loss given Energy Slope Formula 🕝



Formula Example with Units $h_f = S_f \cdot L \qquad 14 = 0.140 \cdot 100 \, \mathrm{m}$

Evaluate Formula (

2.4.14.7) Hydraulic Radius given Conveyance of Channel for Uniform Flow Formula 🕝

Evaluate Formula (

2.4.14.8) Length of Reach by Manning's Formula for Uniform Flow Formula (

$$L = \frac{h_f}{S_f}$$

Example with Units $L = \frac{h_f}{S_f} \qquad 107.1429 \, \text{m} = \frac{15}{0.140}$ Evaluate Formula 🕝

Variables used in list of Indirect Methods of Streamflow Measurement Formulas above

- A Cross-Sectional Area (Square Meter)
- A₁ Area of Channel Section 1 (Square Meter)
- A₂ Area of Channel Section 2 (Square Meter)
- g Acceleration due to Gravity (Meter per Square Second)
- **H** Head over Weir (Meter)
- h₁ Height above Datum at Section 1 (Meter)
- H₁ Upstream Water Surface Elevation (Meter)
- h₂ Height above Datum at Section 2 (Meter)
- H₂ Downstream Water Surface Elevation (Meter)
- h_e Eddy Loss
- h_f Frictional Loss
- **h**_I Head Loss in Reach (Meter)
- k System Constant k
- K Conveyance Function
- K₁ Conveyance of Channel at End Sections at (1)
- K₂ Conveyance of Channel at End Sections at (2)
- Kavg Average Conveyance of Channel
- Ke Eddy Loss Coefficient
- L Reach (Meter)
- n Manning's Roughness Coefficient
- n_{head} Exponent of Head (Meter)
- n_{system} System Constant n
- Q Discharge (Cubic Meter per Second)
- Q₁ Free Flow Discharge under Head H1 (Cubic Meter per Second)
- Q_f Flow Discharge (Cubic Meter per Second)
- Q_s Submerged Discharge (Cubic Meter per Second)
- R₁ Hydraulics Radius of Channel Section 1 (Meter)

Constants, Functions, Measurements used in list of Indirect Methods of Streamflow Measurement Formulas above

- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)
 Acceleration Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)
 Volumetric Flow Rate Unit Conversion

- R₂ Hydraulics Radius of Channel Section 2 (Meter)
- r_H Hydraulic Radius (Meter)
- S_f Energy Slope
- S_{favq} Average Energy Slope
- V₁ Mean Velocity at End Sections at (1) (Meter per Second)
- V₂ Mean Velocity at End Sections at (2) (Meter per Second)
- y₁ Height above Channel Slope at 1 (Meter)
- y₂ Height above Channel Slope at 2 (Meter)
- Z₁ Static Heads at End Sections at (1) (Meter)
- Z₂ Static Head at End Sections at (2) (Meter)

Download other Important Engineering Hydrology PDFs

- Important Abstractions from Precipitation Formulas
- Important Area, Velocity and Ultrasonic• Important Measurement of Method of Streamflow Measurement Formulas (
- Important Discharge Measurements Formulas (
- Important Indirect Methods of Streamflow Measurement Formulas

- Important Losses from Precipitation Formulas (
- **Evapotranspiration Formulas**
- Important Precipitation Formulas
- Important Streamflow Measurement Formulas (
- Important Water Budget Equation for a Catchment Formulas

Try our Unique Visual Calculators

M Percentage error

• Em LCM of three numbers

Subtract fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 12:05:00 PM UTC