Important Discrete Time Signals Formulas PDF

Formulas Examples with Units

List of 14

Important Discrete Time Signals Formulas

Evaluate Formula (

Evaluate Formula

Evaluate Formula (

Evaluate Formula C

Evaluate Formula 🕝

1) Bilinear Transformation Frequency Formula 🕝

$$f_{b} = \frac{2 \cdot \pi \cdot f_{c}}{\tan\left(\pi \cdot \frac{f_{c}}{f_{e}}\right)} \qquad 76.8194 \,\text{Hz} = \frac{2 \cdot 3.1416 \cdot 4.52 \,\text{Hz}}{\tan\left(3.1416 \cdot \frac{4.52 \,\text{Hz}}{40.1 \,\text{Hz}}\right)}$$

2) Cutoff Angular Frequency Formula C

$$\omega_{co} = \frac{M \cdot f_{ce}}{W_{ss} \cdot K}$$

$$\omega_{co} = \frac{M \cdot f_{ce}}{W_{ss} \cdot K}$$

$$0.96 \, rad/s = \frac{8 \cdot 2.52 \, Hz}{7 \cdot 3 \, s}$$

3) Damping Coefficient of Second Order Transmittance Formula 🕝

$$\zeta_{o} = \left(\frac{1}{2}\right) \cdot R_{in} \cdot C_{in} \cdot \sqrt{\frac{K_{f} \cdot L_{o}}{W_{ss} \cdot C_{in}}}$$

Example with Units

4) Fourier Transform of Rectangular Window Formula C

$$W_{rn} = \frac{\sin\left(2 \cdot \pi \cdot T_{o} \cdot f_{inp}\right)}{\pi \cdot f_{inp}}$$

$$W_{\rm rn} = \frac{\sin(2 \cdot \pi \cdot T_0 \cdot f_{\rm inp})}{\pi \cdot f_{\rm inp}}$$

$$0.0373 = \frac{\sin(2 \cdot 3.1416 \cdot 40 \cdot 5.01 \,\text{Hz})}{3.1416 \cdot 5.01 \,\text{Hz}}$$

5) Frequency Dirac Comb Angle Formula 🕝

$$\theta = 2 \cdot \pi \cdot f_{\text{inp}} \cdot \frac{1}{f_0}$$

Example with Units

$$\theta = 2 \cdot \pi \cdot f_{inp} \cdot \frac{1}{f_0}$$

$$0.6296_{rad} = 2 \cdot 3.1416 \cdot 5.01_{Hz} \cdot \frac{1}{50_{Hz}}$$

Formula

 $W_{hm} = 0.54 - 0.46 \cdot cos \left(\frac{2 \cdot \pi \cdot n}{W_{cs} - 1} \right) \left| \quad \right| \quad 0.8143 = 0.54 - 0.46 \cdot cos \left(\frac{2 \cdot 3.1416 \cdot 2.11}{7 - 1} \right)$

7) Hanning Window Formula 🕝

 $W_{hn} = \frac{1}{2} - \left(\frac{1}{2}\right) \cdot \cos\left(\frac{2 \cdot \pi \cdot n}{W_{ss} - 1}\right) \left| \quad 0.7981 = \frac{1}{2} - \left(\frac{1}{2}\right) \cdot \cos\left(\frac{2 \cdot 3.1416 \cdot 2.11}{7 - 1}\right) \right|$

8) Initial Frequency of Dirac Comb Angle Formula C

 $f_{o} = \frac{2 \cdot \pi \cdot f_{inp}}{\theta}$ $50.7722 \, Hz = \frac{2 \cdot 3.1416 \cdot 5.01 \, Hz}{0.62 \, rad}$

Evaluate Formula (

Evaluate Formula (

Evaluate Formula

Evaluate Formula (

9) Inverse Transmittance Filtering Formula [7]

Formula

$$K_{n} = \left(sinc \left(\pi \cdot \frac{f_{inp}}{f_{e}} \right) \right)^{-1}$$

$$K_{n} = \left(sinc \left(\pi \cdot \frac{f_{inp}}{f_{e}} \right) \right)^{-1}$$
 $1.3069 = \left(sinc \left(3.1416 \cdot \frac{5.01_{Hz}}{40.1_{Hz}} \right) \right)^{-1}$

10) Maximal Variation of Cutoff Angular Frequency Formula 🕝

 $M = \frac{\omega_{\text{co}} \cdot W_{\text{SS}} \cdot K}{f} \qquad 8 = \frac{0.96 \, \text{rad/s} \cdot 7 \cdot 3 \, \text{s}}{2.52 \, \text{Hz}}$

Evaluate Formula

11) Natural Angular Frequency of Second Order Transmittance Formula C

 $\omega_n = \left\lceil \frac{K_f \cdot L_o}{W_{\text{SS}} \cdot C_{in}} \right\rceil = 0.3381 \, \text{rad/s} = \sqrt{\frac{0.76 \cdot 4 \, \text{H}}{7 \cdot 3.8 \, \text{F}}}$

Evaluate Formula 🕝

12) Sampling Frequency of Bilinear Formula 🕝

Example with Units $f_{e} = \frac{\pi \cdot f_{c}}{\arctan\left(\frac{2 \cdot \pi \cdot f_{c}}{f_{c}}\right)} \left[40.0955 \, Hz \right] = \frac{3.1416 \cdot 4.52 \, Hz}{\arctan\left(\frac{2 \cdot 3.1416 \cdot 4.52 \, Hz}{76.81 \, Hz}\right)}$ Evaluate Formula (

13) Transmittance Filtering Formula

Formula

 $f = \sin c \left(\pi \cdot \left(\frac{f_{\text{inp}}}{f} \right) \right)$

Example with Units

$$0.7652 = \sin c \left(\frac{3.1416 \cdot \left(\frac{5.01 \, \text{Hz}}{40.1 \, \text{Hz}} \right) \right)$$

14) Triangular Window Formula 🕝

Formula

Evaluate Formula 🕝

Evaluate Formula 🕝

$$W_{tn} = 0.42 - 0.52 \cdot \cos\left(\frac{2 \cdot \pi \cdot n}{W_{ss} - 1}\right) - 0.08 \cdot \cos\left(\frac{4 \cdot \pi \cdot n}{W_{ss} - 1}\right)$$

Example

$$0.7532 = 0.42 - 0.52 \cdot \cos\left(\frac{2 \cdot 3.1416 \cdot 2.11}{7 \cdot 1}\right) - 0.08 \cdot \cos\left(\frac{4 \cdot 3.1416 \cdot 2.11}{7 \cdot 1}\right)$$

Variables used in list of Discrete Time Signals Formulas above

- C_{in} Initial Capacitance (Farad)
- **f**_b Bilinear Frequency (Hertz)
- **f**_c Distortion Frequency (*Hertz*)
- f_{ce} Central Frequency (Hertz)
- **f**_e Sampling Frequency (Hertz)
- **f**_{inp} Input Periodic Frequency (Hertz)
- **f**_o Initial Frequency (Hertz)
- K Clock Count (Second)
- K_f Transmittance Filtering
- K_n Inverse Transmittance Filtering
- Lo Input Inductance (Henry)
- M Maximal Variation
- n Number of Samples
- R_{in} Input Resistance (Ohm)
- To Unlimited Time Signal
- W_{hm} Hamming Window
- W_{hn} Hanning Window
- W_{rn} Rectangular Window
- W_{SS} Sample Signal Window
- W_{tn} Triangular Window
- ζ_o Damping Coefficient (Newton Second per Meter)
- θ Signal Angle (Radian)
- ω_{co} Cutoff Angular Frequency (Radian per Second)
- ω_n Natural Angular Frequency (Radian per Second)

Constants, Functions, Measurements used in list of Discrete Time Signals Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 - Archimedes' constant
- Functions: arctan, arctan(Number)

 Inverse trigonometric functions are usually
 accompanied by the prefix arc. Mathematically,
 we represent arctan or the inverse tangent
 function as tan-1 x or arctan(x).
- Functions: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Functions: ctan, ctan(Angle)
 Cotangent is a trigonometric function that is defined as the ratio of the adjacent side to the opposite side in a right triangle.
- Functions: sin, sin(Angle)
 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Functions: sinc, sinc(Number)
 The sinc function is a function that is frequently used in signal processing and the theory of Fourier transforms.
- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Functions: tan, tan(Angle)
 The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Angle in Radian (rad)
 Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Capacitance in Farad (F)
 Capacitance Unit Conversion

- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Inductance in Henry (H)
 Inductance Unit Conversion
- Measurement: Damping Coefficient in Newton Second per Meter (Ns/m)
 Damping Coefficient Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s)
 - Angular Frequency Unit Conversion

Download other Important Signal and Systems PDFs

- Important Continuous Time Signals
 Formulas (7)
- Important Discrete Time Signals
 Formulas (*)

Try our Unique Visual Calculators

- Winning percentage 🕝
- ECM of two numbers

Mixed fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 5:29:30 AM UTC