Important Common Stage Amplifiers Formulas PDF

Formulas Examples with Units	List of 26 Important Common Stage Amplifiers Formulas
1) Amplifier Bandw	ridth in Discrete-Circuit Amplifier Formula
Formula	Example with Units
$BW = f_h - f_L \qquad 0.$	25 Hz = 100.50 Hz - 100.25 Hz
2) Bypass C	apacitance of CS Amplifier Formula 🕝
Formula $C_{s} = \frac{1}{f_{tm} \cdot R_{sig}}$	Example with UnitsEvaluate Formula $25.9994 \mu F = \frac{1}{30.77 \text{Hz} \cdot 1.25 \text{k}\Omega}$
3) Collector Base Ju	nction Resistance of CE Amplifier Formula 🕝
Formula $R_{c} = R_{sig} \cdot (1 + g_{m} \cdot R_{L}) + R_{L}$ 11.	Example with UnitsEvaluate Formula $68 \mathrm{kn} = 1.25 \mathrm{kn} \cdot (1 + 4.8 \mathrm{ms} \cdot 1.49 \mathrm{kn}) + 1.49 \mathrm{kn}$
4) Currei	nt Gain of CS Amplifier Formula 🕝
Formula $A_i = \frac{A_p}{A_v}$	Example Evaluate Formula (****) $3.6984 = \frac{3.691}{0.998}$
5) Drain Voltage through Method	of Open-Circuit Time Constants to CS Amplifier Formula
Formula $V_d = v_x + V_{gs}$	Example with UnitsEvaluate Formula (f)15.32v= 11.32v+ 4v
6) Effective High Frequ	iency Time Constant of CE Amplifier Formula 🕝
$\tau_{\rm H} = C_{\rm be} \cdot R_{\rm sig} + \left(C_{\rm cb} \cdot \left(R_{\rm sig} \right) \right)$	Formula Evaluate Formula $\cdot (1 + g_m \cdot R_L) + R_L)) + (C_t \cdot R_L)$ Example with Units
$3.5421_{s} = 27 \mu\text{F} \cdot 1.25 k\Omega + \left(300 \mu\text{F} \cdot\right)$	$(1.25 \text{kn} \cdot (1 + 4.8 \text{ms} \cdot 1.49 \text{kn}) + 1.49 \text{kn})) + (2.889 \text{\mu}\text{F} \cdot 1.49 \text{kn})$

 $520.104\,\mu\text{F} = 300\,\mu\text{F} + 27\,\mu\text{F} \cdot (1 + (4.8\,\text{ms} \cdot 1.49\,\text{k}\Omega))$

FormulaExample with UnitsEvaluate Formula
$$T_{oc} = (C_t + C_{gd}) \cdot R_L$$
 $0.0063s = (2.889 \mu F + 1.345 \mu F) \cdot 1.49 \kappa \Omega$

19) Open Circuit Time Constant in High Frequency Response of CG Amplifier Formula 🕝

$\boxed{\begin{array}{l} \textbf{Formula} \\ \textbf{T}_{oc} = \textbf{C}_{gs} \cdot \left(\frac{1}{\textbf{R}_{sig}} + \textbf{g}_{m}\right) + \left(\textbf{C}_{t} + \textbf{C}_{gd}\right) \cdot \textbf{R}_{L}}$

Example with Units

$$0.0063_{s} = 2.6_{\mu F} \cdot \left(\frac{1}{1.25_{k\Omega}} + 4.8_{mS}\right) + (2.889_{\mu F} + 1.345_{\mu F}) \cdot 1.49_{k\Omega}$$

20) Output Voltage of CS Amplifier Formula 🕝

FormulaExample with Units $V_{out} = g_m \cdot V_{gs} \cdot R_L$ $28.608v = 4.8ms \cdot 4v \cdot 1.49k\Omega$

Evaluate Formula

Evaluate Formula

Evaluate Formula 🦳

21) Resistance between Gate and Drain in Open Circuit Time Constants Method of CS Amplifier Formula

	=	
Formula	Example with Units	
$R_{t} = \frac{v_{x}}{i_{x}}$	$0.3861 \mathrm{k\Omega} = \frac{11.32 \mathrm{v}}{29.32 \mathrm{mA}}$	

22) Resistance between Gate and Source of CG Amplifier Formula C

Formula	Example with Units
$R_{t} = \frac{1}{\frac{1}{R_{in}} + \frac{1}{R_{sig}}}$	$0.4803\mathrm{km}\ = \frac{1}{\frac{1}{0.78\mathrm{km}}\ + \frac{1}{1.25\mathrm{km}}}$

 $V_{gs} = V_d - v_x$ 4v = 15.32v - 11.32v

25) Test Current in Open Circuit Time Constants Method of CS Amplifier Formula 🕝

Formula

 $\mathbf{i}_x = \mathbf{g}_m \cdot \mathbf{V}_{gs} + \frac{\mathbf{v}_x + \mathbf{V}_{gs}}{R_{I}}$

	Example with Units
$29.4819 \mathrm{mA} = 4.8 \mathrm{m}$	11.32v + 4v
	1.49 κΩ

Evaluate Formula

26) Upper 3dB Frequency of CE Amplifier Formula 🕝

Variables used in list of Common Stage Amplifiers Formulas above

- Ahf High Frequency Response
- A_i Current Gain
- Am Amplifier Gain in Mid Band (Decibel)
- Amid Mid Band Gain
- Ap Power Gain
- A_v Voltage Gain
- BW Amplifier Bandwidth (Hertz)
- Cbe Base Emitter Capacitance (Microfarad)
- C_{cb} Collector Base Junction Capacitance (*Microfarad*)
- C_{gd} Gate to Drain Capacitance (Microfarad)
- C_{gs} Gate to Source Capacitance (Microfarad)
- Ci Input Capacitance (Microfarad)
- C_s Bypass Capacitor (Microfarad)
- Ct Capacitance (Microfarad)
- f_{3dB} 3 dB Frequency (Hertz)
- **f_h** High Frequency (Hertz)
- **f**_L Low Frequency (Hertz)
- **f**o Frequency Observed (Hertz)
- **f**_p Pole Frequency (Hertz)
- fp2 Second Pole Frequency (Hertz)
- **f**_t Frequency (Hertz)
- **f**_{tm} Transmission Frequency (Hertz)
- **f_{u3dB}** Upper 3-dB Frequency (Hertz)
- g_m Transconductance (Millisiemens)
- i_x Test Current (Milliampere)
- R_c Collector Resistance (Kilohm)
- R_{in} Finite Input Resistance (Kilohm)
- R_L Load Resistance (Kilohm)
- Rout Output Resistance (Kilohm)
- R_{sig} Signal Resistance (Kilohm)

Constants, Functions, Measurements used in list of Common Stage Amplifiers Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Electric Current in Milliampere (mA) Electric Current Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion
- Measurement: Electric Resistance in Kilohm $(k\Omega)$

Electric Resistance Unit Conversion 🕝

- Measurement: Electric Conductance in Millisiemens (mS) Electric Conductance Unit Conversion
- Measurement: Electric Potential in Volt (V) Electric Potential Unit Conversion
- Measurement: Sound in Decibel (dB) Sound Unit Conversion

- R'sig Internal Small Signal Resistance (Kilohm)
- Rt Resistance (Kilohm)
- Toc Open Circuit Time Constant (Second)
- V_d Drain Voltage (Volt)
- V_{gs} Gate to Source Voltage (Volt)
- Vout Output Voltage (Volt)
- V'sig Small Signal Voltage (Volt)
- Vth Threshold Voltage (Volt)
- V_x Test Voltage (Volt)
- τ_{H} Effective High Frequency Time Constant (Second)

- 🔹 🌠 Winning percentage 🕝
- 🔛 LCM of two numbers 🕝

• 10 Mixed fraction 10 mixed

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/10/2024 | 3:40:05 AM UTC

