Important Zero Order followed by First Order **Reaction Formulas PDF**

Formulas Examples with Units

List of 9

Important Zero Order followed by First Order **Reaction Formulas**

1) Initial Concentration of Reactant in Zero Order Reaction followed by First Order Reaction Formula 🕝

Example with Units

Evaluate Formula (

$$C_{A0} = C_A + k_0 \cdot \Delta t$$

 $C_{A0} = C_A + k_0 \cdot \Delta t$ $80 \,\text{mol/m}^3 = 44 \,\text{mol/m}^3 + 12 \,\text{mol/m}^{3*s} \cdot 3 \,\text{s}$

2) Initial Reactant Concentration by Intermediate Conc. for Zero Order followed by First Order Rxn Formula 🦳

Formula

Evaluate Formula (

$$C_{A0} = \frac{C_{R}}{\frac{1}{K} \cdot \left(1 - \exp\left(-\left(k_{1} \cdot \Delta t\right)\right)\right)}$$

Example with Units

$$84.1007 \,\text{mol/m}^3 = \frac{10 \,\text{mol/m}^3}{\frac{1}{1.593 \,\text{mol/m}^{3*}\text{s}} \cdot \left(1 - \exp\left(-\left(0.07 \,\text{mol/m}^{3*}\text{s} \cdot 3 \,\text{s}\right)\right)\right)}$$

3) Initial Reactant Concentration using Intermediate Conc. for Zero Order followed by First Order Rxn Formula

Formula

Evaluate Formula (

$$C_{a0} = \frac{C_{R}}{\frac{1}{K} \cdot \left(\exp\left(K - k_{1} \cdot \Delta t \right) - \exp\left(- k_{1} \cdot \Delta t \right) \right)}$$

Example with Units

$$5.0153\,\text{mol/m}^3 \ = \frac{10\,\text{mol/m}^3}{\frac{1}{1.593\,\text{mol/m}^{3*}\text{s}} \cdot \left(\,\exp\left(\,1.593\,\text{mol/m}^{3*}\text{s}\, -\, 0.07\,\text{mol/m}^{2*}\text{s}\, \cdot\, 3\,\text{s}\,\,\right)\, -\, \exp\left(\,-\, 0.07\,\text{mol/m}^{3*}\text{s}\, \cdot\, 3\,\text{s}\,\,\right)\,\right)}$$

4) Intermediate Concentration for Zero Order followed by First Order with Greater Rxn Time Formula 🕝

Formula

Evaluate Formula (

$$C_{R} = \frac{C_{0}}{K} \cdot \left(\exp\left(K - k_{1} \cdot \Delta t'' \right) - \exp\left(- k_{1} \cdot \Delta t'' \right) \right)$$

Example with Units

$$10.2968\,\text{mol/m}^3 = \frac{5.5\,\text{mol/m}^3}{1.593\,\text{mol/m}^{3*}\text{s}} \cdot \left(\exp\left(1.593\,\text{mol/m}^{3*}\text{s} - 0.07\,\text{mol/m}^{3*}\text{s} \cdot 3.9\,\text{s}\right) - \exp\left(-0.07\,\text{mol/m}^{3*}\text{s} \cdot 3.9\,\text{s}\right)\right)$$

5) Intermediate Concentration for Zero Order followed by First Order with Less Rxn Time Formula 🕝

$$C_{R} = \left(\frac{C_{A0}}{K}\right) \cdot \left(1 - \exp\left(-\left(k_{1} \cdot \Delta t'\right)\right)\right)$$

$$9.4839 \, \text{mol/m}^3 \, = \left(\frac{80 \, \text{mol/m}^3}{1.593 \, \text{mol/m}^{3*s}}\right) \cdot \left(1 - \exp\left(-\left(0.07 \, \text{mol/m}^{3*s} \cdot 2.99 \, \text{s}\right)\right)\right)$$

6) Maximum Intermediate Concentration in Zero Order followed by First Order Formula 🕝

Evaluate Formula (

Evaluate Formula (

$$C_{R,max} = \left(\frac{C_{A0} \cdot (1 - \exp(-K))}{K}\right)$$

$$40.0093\,\text{mol/m}^3 = \left(\frac{80\,\text{mol/m}^3\,\cdot\,\left(\,1\,-\,\exp\left(\,\,-\,1.593\,\text{mol/m}^{3*}\text{s}\,\,\right)\,\right)}{1.593\,\text{mol/m}^{3*}\text{s}}\right)$$

7) Rate Constant of Zero Order Reaction in Zero Order Reaction followed by First Order Reaction Formula C

Evaluate Formula 🕝

8) Reactant Concentration of Zero Order Reaction followed by First Order Reaction Formula

Example with Units

Evaluate Formula 🕝

 $C_{A} = \left(C_{A0} - \left(k_{0} \cdot \Delta t \right) \right)$ $44 \text{ mol/m}^{3} = \left(80 \text{ mol/m}^{3} - \left(12 \text{ mol/m}^{3*s} \cdot 3 \text{ s} \right) \right)$

Formula

$$c_{R,max} = \frac{c_{A0}}{k_0}$$

$$6.6667_s = \frac{80 \, \text{mol/m}^3}{12 \, \text{mol/m}^{3*} s}$$

Variables used in list of Zero Order followed by First Order Reaction Formulas above

- C₀ Initial Conc. of Reactant for Intermediate Conc. (Mole per Cubic Meter)
- C_A Reactant Concentration for Multiple Rxns (Mole per Cubic Meter)
- C_{a0} Initial Reactant Concentration using Intermediate (Mole per Cubic Meter)
- C_{A0} Initial Concentration of Reactant for Series Rxn (Mole per Cubic Meter)
- C_R Intermediate Concentration for Series Rxn
 (Mole per Cubic Meter)
- C_{R,max} Maximum Intermediate Concentration (Mole per Cubic Meter)
- K Overall Rate of Reaction (Mole per Cubic Meter Second)
- k₀ Rate Constant for Zero Order Rxn (Mole per Cubic Meter Second)
- k₁ Rate Constant for 1st Order 2nd Step (Mole per Cubic Meter Second)
- At Time Interval (Second)
- \(\Delta t'\) Time Interval for Less Reaction Time (Second)
- \(\Delta t^{\mathbf{i}}\) Time Interval for Greater Reaction Time (Second)
- T_{R,max} Time at Maximum Intermediate Concentration (Second)

Constants, Functions, Measurements used in list of Zero Order followed by First Order Reaction Formulas above

- Functions: exp, exp(Number)
 n an exponential function, the value of the
 function changes by a constant factor for every
 unit change in the independent variable.
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Molar Concentration in Mole per Cubic Meter (mol/m³)

 Molar Concentration Unit Conversion
- Measurement: Reaction Rate in Mole per Cubic Meter Second (mol/m³*s)
 Reaction Rate Unit Conversion

Download other Important Potpourri of Multiple Reactions PDFs

Important First Order followed by Zero
 Important Zero Order followed by First
 Order Reaction Formulas
 Order Reaction Formulas

Try our Unique Visual Calculators

• **Percentage error**

• Em LCM of three numbers

• 🛐 Subtract fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 5:24:31 AM UTC