Important Proof Load on Spring Formulas PDF

Formulas Examples with Units

List of 18

Important Proof Load on Spring Formulas

Evaluate Formula

Evaluate Formula

Evaluate Formula C

Evaluate Formula

1) Leaf Springs Formulas 🕝

1.1) Deflection given Proof Load on Leaf Spring Formula 🕝

Formula

Example with Units

 $\delta = \frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot E \cdot n \cdot t^{3} \cdot b} \left| \quad 3.4047 \text{ mm} \right| = \frac{3 \cdot 585 \text{ kN} \cdot 4170 \text{ mm}^{3}}{8 \cdot 20000 \text{ MPa} \cdot 8 \cdot 460 \text{ mm}^{3} \cdot 300 \text{ mm}}$

1.2) Length given Proof Load on Leaf Spring Formula 🕝

 $L = \left(\frac{8 \cdot E \cdot n \cdot b \cdot t^{3} \cdot \delta}{3 \cdot W_{0} \cdot (ext Spring)}\right)^{\frac{3}{3}}$

 $4168.0748 \, \text{mm} = \left(\frac{8 \cdot 20000 \, \text{MPa} \cdot 8 \cdot 300 \, \text{mm} \cdot 460 \, \text{mm}}{3 \cdot 585 \, \text{kN}}\right)^{\frac{3}{3}}$

1.3) Modulus of Elasticity given Proof Load on Leaf Spring Formula 🕝

Example with Units

 $E = \frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot n \cdot h \cdot t^{3} \cdot \delta} \bigg| 20027.7262 \, MPa = \frac{3 \cdot 585 \, kN \cdot 4170 \, mm^{3}}{8 \cdot 8 \cdot 300 \, mm \cdot 460 \, mm^{3} \cdot 3.4 \, mm^{3}}$

1.4) Number of Plates given Proof Load on Leaf Spring Formula 🕝

 $n = \frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot E \cdot b \cdot t^{3} \cdot \delta}$ $8.0111 = \frac{3 \cdot 585 \text{ kN} \cdot 4170 \text{ mm}^{3}}{8 \cdot 20000 \text{ Mpa} \cdot 300 \text{ mm} \cdot 460 \text{ mm}^{3} \cdot 3.4 \text{ mm}}$

1.5) Proof Load on Leaf Spring Formula C

Formula

$$W_{0 \text{ (Leaf Spring)}} = \frac{8 \cdot E \cdot n \cdot b \cdot t^{3} \cdot \delta}{3 \cdot L^{3}}$$

Example with Units

$$584.1901 \, \text{kN} = \frac{8 \cdot 20000 \, \text{MPa} \cdot 8 \cdot 300 \, \text{mm} \cdot 460 \, \text{mm}^{3} \cdot 3.4 \, \text{mm}}{3 \cdot 4170 \, \text{mm}^{3}}$$

1.6) Thickness given Proof Load on Leaf Spring Formula 🕝

Formula
$$t = \left(\frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot E \cdot n \cdot \delta \cdot b}\right)^{\frac{1}{3}}$$

Example with Units

$$460.2125 \, \text{mm} \; = \left(\frac{3 \cdot 585 \, \text{kN} \cdot 4170 \, \text{mm}}{8 \cdot 20000 \, \text{MPa} \cdot 8 \cdot 3.4 \, \text{mm} \cdot 300 \, \text{mm}}\right)^{\frac{1}{3}}$$

1.7) Width given Proof Load on Leaf Spring Formula C

Formula

2) Quarter Elliptical Springs Formulas

2.1) Deflection given Proof Load in Quarter Elliptical Spring Formula C

Formula

$$\delta = \frac{6 \cdot W_{0 \text{ (Elliptical Spring)}} \cdot L^{3}}{E \cdot n \cdot t^{3} \cdot b}$$

Example with Units

$$\delta = \frac{6 \cdot W_{0 \; (Elliptical \; Spring)} \cdot L^{3}}{E \cdot n \cdot t^{3} \cdot b} \qquad 3.4455 \, \text{mm} \; = \frac{6 \cdot 37 \, \text{kN} \, \cdot 4170 \, \text{mm}}{20000 \, \text{MPa} \, \cdot 8 \cdot 460 \, \text{mm}}^{3} \cdot 300 \, \text{mm}$$

Evaluate Formula

Evaluate Formula (

Evaluate Formula

2.2) Length given Proof Load in Quarter Elliptical Spring Formula 🕝

Evaluate Formula (

Evaluate Formula

Evaluate Formula

Evaluate Formula

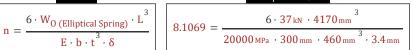
L =
$$\left(\frac{\mathbf{E} \cdot \mathbf{n} \cdot \mathbf{b} \cdot \mathbf{t}^3 \cdot \mathbf{\delta}}{6 \cdot \mathbf{W}_0 \text{ (Elliptical Spring)}}\right)^{\frac{1}{3}}$$

Example with Units

$$4151.5814_{\text{mm}} = \left(\frac{20000_{\text{MPa}} \cdot 8 \cdot 300_{\text{mm}} \cdot 460_{\text{mm}}^{3} \cdot 3.4_{\text{mm}}}{6 \cdot 37_{\text{kN}}}\right)^{\frac{1}{3}}$$

2.3) Modulus of Elasticity given Proof Load in Quarter Elliptical Spring Formula 🕝

$$E = \frac{6 \cdot W_0}{n \cdot b \cdot t^3 \cdot \delta} \frac{\text{(Elliptical Spring)} \cdot L^3}{n \cdot b \cdot t^3 \cdot \delta}$$


Example with Units

$$E = \frac{6 \cdot W_{0 \text{ (Elliptical Spring)}} \cdot L^{3}}{n \cdot b \cdot t^{3} \cdot \delta}$$

$$20267.3742 \text{ MPa} = \frac{6 \cdot 37 \text{ kN} \cdot 4170 \text{ mm}}{8 \cdot 300 \text{ mm} \cdot 460 \text{ mm}}^{3} \cdot 3.4 \text{ mm}$$

2.4) Number of Plates given Proof Load in Quarter Elliptical Spring Formula 🕝

Example with Units

2.5) Proof Load in Quarter Elliptical Spring Formula

$$W_{O \text{ (Elliptical Spring)}} = \frac{E \cdot n \cdot b \cdot t^{3} \cdot \delta}{6 \cdot L^{3}}$$

Example with Units

$$36.5119_{kN} = \frac{20000_{MPa} \cdot 8 \cdot 300_{mm} \cdot 460_{mm}^{3} \cdot 3.4_{mm}}{6 \cdot 4170_{mm}^{3}}$$

2.6) Thickness given Proof Load in Quarter Elliptical Spring Formula

Example with Units $462.0408 \, \text{mm} = \left(\frac{6 \cdot 37 \, \text{kN} \cdot 4170 \, \text{mm}}{20000 \, \text{MPa} \cdot 8 \cdot 3.4 \, \text{mm} \cdot 300 \, \text{mm}} \right)^{\frac{3}{3}}$

2.7) Width given Proof Load in Quarter Elliptical Spring Formula [7]

Example with Units $b = \frac{6 \cdot W_{0 \text{ (Elliptical Spring)}} \cdot L^{3}}{E \cdot n \cdot t^{3} \cdot \delta} \left| \quad 304.0106 \, \text{mm} \right| = \frac{6 \cdot 37 \, \text{kN} \cdot 4170 \, \text{mm}}{20000 \, \text{MPa} \cdot 8 \cdot 460 \, \text{mm}}^{3} \cdot 3.4 \, \text{mm}}$

3) Springs in Parallel and Series Load Formulas (

3.1) Springs in Parallel - Load Formula (

Example with Units

3.2) Springs in Parallel - Spring Constant Formula 🕝

Formula
$$K = K_1 + K_2$$

Example with Units $100 \,\text{N/mm} = 49 \,\text{N/mm} + 51 \,\text{N/mm}$

Evaluate Formula 🕝

Evaluate Formula (

Evaluate Formula (

Evaluate Formula [

3.3) Springs in Series- Deflection Formula 🕝

Formula
$$\delta = \delta_1 + \delta_2$$

Example with Units $179 \, \text{mm} = 36 \, \text{mm} + 143 \, \text{mm}$

Evaluate Formula 🕝

Evaluate Formula C

3.4) Springs in Series- Spring Constant Formula C

Formula
$$K = \frac{K_1 \cdot K_2}{K_1 + K_2}$$

Formula Example with Units
$$K = \frac{K_1 \cdot K_2}{K_1 + K_2}$$

$$24.99 \, \text{N/mm} = \frac{49 \, \text{N/mm} \cdot 51 \, \text{N/mm}}{49 \, \text{N/mm} + 51 \, \text{N/mm}}$$

Variables used in list of Proof Load on Spring Formulas above

- b Width of Cross Section (Millimeter)
- E Young's Modulus (Megapascal)
- K Stiffness of Spring (Newton per Millimeter)
- K₁ Stiffness of Spring 1 (Newton per Millimeter)
- K₂ Stiffness of Spring 2 (Newton per Millimeter)
- L Length in Spring (Millimeter)
- n Number of Plates
- t Thickness of Section (Millimeter)
- W₁ Load 1 (Newton)
- W₂ Load 2 (Newton)
- Wload Spring Load (Newton)
- W_O (Elliptical Spring) Proof Load on Elliptical Spring (Kilonewton)
- W_O (Leaf Spring) Proof Load on Leaf Spring (Kilonewton)
- δ Deflection of Spring (Millimeter)
- δ₁ Deflection 1 (Millimeter)
- δ₂ Deflection 2 (Millimeter)

Constants, Functions, Measurements used in list of Proof Load on Spring Formulas above

- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N)

Force Unit Conversion

 Measurement: Stiffness Constant in Newton per Millimeter (N/mm)
 Stiffness Constant Unit Conversion

Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Download other Important Spring PDFs

- Important Deflection in Spring
 Formulas
- Important Proof Load on Spring Formulas
- Important Maximum Bending Stress in Important Stiffness Formulas
 Spring Formulas

Try our Unique Visual Calculators

- Percentage growth
- ES LCM calculator

Divide fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:56:44 AM UTC