Important Design of Cotter Joint Formulas PDF

Formulas Examples with Units

List of 51

Important Design of Cotter Joint Formulas

1) Forces and Loads on Joint Formulas [

1.1) Force on Cotter given Shear Stress in Cotter Formula [

Example with Units

 $L = 2 \cdot t_{c} \cdot b \cdot \tau_{co}$

 $50000.784 \,\mathrm{N} = 2 \cdot 21.478 \,\mathrm{mm} \cdot 48.5 \,\mathrm{mm} \cdot 24 \,\mathrm{N/mm^2}$

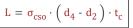
1.2) Load Taken by Cotter Joint Rod given Tensile Stress in Rod Formula 🕝

Evaluate Formula

Evaluate Formula

$$L = \frac{\pi \cdot d^2 \cdot \sigma t_{rod}}{4}$$

Example with Units


 $50000.61 \,\mathrm{N} = \frac{3.1416 \cdot 35.6827 \,\mathrm{mm}^2 \cdot 50 \,\mathrm{N/mm^2}}{4}$

1.3) Load Taken by Socket of Cotter Joint given Compressive Stress Formula 🦵

Formula

Example with Units

Evaluate Formula (

$$| 50000.784 \, \text{N} = 58.20 \, \text{N/mm}^2 \cdot \left(80 \, \text{mm} - 40 \, \text{mm} \right) \cdot 21.478 \, \text{mm}$$

1.4) Load Taken by Socket of Cotter Joint given Shear Stress in Socket Formula 🕝

Formula

Example with Units

Evaluate Formula 🕝

$$L = 2 \cdot \left(\ d_4 - d_2 \ \right) \cdot c \cdot \tau_{SO} \quad \boxed{ 50000 \, \text{N} \, = 2 \cdot \left(\, 80 \, \text{mm} \, - 40 \, \text{mm} \, \right) \cdot 25.0 \, \text{mm} \, \cdot 25 \, \text{N/mm}^2}$$

1.5) Load Taken by Socket of Cotter Joint given Tensile Stress in Socket Formula 🕝

Evaluate Formula C

$$L = \sigma_t so \cdot \left(\frac{\pi}{4} \cdot \left(\left. d_1^2 - d_2^2 \right) - t_c \cdot \left(\left. d_1 - d_2 \right) \right) \right)$$

$$50000.8227 \,\mathrm{N} \,=\, 68.224 \,\mathrm{N/mm^2} \,\cdot \left(\frac{3.1416}{4} \cdot \left(54 \,\mathrm{mm}^2 - 40 \,\mathrm{mm}^2\right) - 21.478 \,\mathrm{mm} \,\cdot \left(54 \,\mathrm{mm} - 40 \,\mathrm{mm}\right)\right)$$

1.6) Load Taken by Spigot of Cotter Joint given Compressive Stress in Spigot Considering Crushing Failure Formula

Evaluate Formula (

$$L = t_{c} \cdot d_{2} \cdot \sigma_{c1}$$

1.7) Load Taken by Spigot of Cotter Joint given Shear Stress in Spigot Formula 🕝

Formula

Example with Units

Evaluate Formula (

 $L = 2 \cdot L_a \cdot d_2 \cdot \tau_{\text{SD}} \ \middle| \ \middle| \ 50000.48 \, \text{N} \ = 2 \cdot 23.5 \, \text{mm} \, \cdot 40 \, \text{mm} \, \cdot 26.596 \, \text{N/mm}^2$

1.8) Maximum Load taken by Cotter Joint given Spigot Diameter, Thickness and Stress Formula 🕝

Formula

Evaluate Formula [

$$L = \left(\frac{\pi}{4} \cdot d_2^2 - d_2 \cdot t_c\right) \cdot \sigma_t sp$$

Example with Units

$$50000.8885 \,\text{N} = \left(\frac{3.1416}{4} \cdot 40 \,\text{mm}^{2} - 40 \,\text{mm} \cdot 21.478 \,\text{mm}\right) \cdot 125.783 \,\text{N/mm}^{2}$$

1.9) Permissible Shear Stress for Cotter Formula 🕝

Formula

Example with Units

Evaluate Formula (

 $719988.7106\,\text{N/m}^2 = \frac{1500\,\text{N}}{2\cdot 48.5\,\text{mm} \cdot 21.478\,\text{mm}}$

1.10) Permissible Shear Stress for Spigot Formula 🕝

Example with Units

Evaluate Formula

 $\tau_{\rm p} = \frac{\rm P}{2 \cdot {\rm a} \cdot {\rm d}_{\rm ex}} \left[-\frac{1500 \, \rm n}{957854.4061 \, \rm n/m^2} \right] = \frac{1500 \, \rm n}{2 \cdot 17.4 \, \rm mm \cdot 45 \, mm}$

1.11) Tensile Stress in Spigot Formula 🕝

Formula

Evaluate Formula 🕝

$$\sigma_{t} = \frac{P}{\left(\frac{\pi}{4} \cdot d_{ex}^{2}\right) - \left(d_{ex} \cdot t_{c}\right)}$$

$$2.4041 \,\text{N/mm}^2 = \frac{1500 \,\text{N}}{\left(\frac{3.1416}{4} \cdot 45 \,\text{mm}^2\right) - \left(45 \,\text{mm} \cdot 21.478 \,\text{mm}\right)}$$

2) Joint Geometry and Dimensions Formulas [7]

2.1) Cross Section Area of Socket End Resisting Shear Failure Formula 🕝

Formula

Example with Units

 $A = (d_4 - d_2) \cdot c$ | 1000 mm² = (80 mm - 40 mm) · 25.0 mm

2.2) Cross Section Area of Socket of Cotter Joint Prone to Failure Formula

Evaluate Formula (

Evaluate Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula C

Formula $A = \frac{\pi}{4} \cdot \left(d_1^2 - d_2^2 \right) - t_c \cdot \left(d_1 - d_2 \right)$

Example with Units

$$732.892 \, \text{mm}^2 = \frac{3.1416}{4} \cdot \left(54 \, \text{mm}^2 - 40 \, \text{mm}^2\right) - 21.478 \, \text{mm} \cdot \left(54 \, \text{mm} - 40 \, \text{mm}\right)$$

2.3) Cross Section Area of Spigot of Cotter Joint Prone to Failure Formula 🕝

 $A_{s} = \frac{\pi \cdot d_{2}^{2}}{4} - d_{2} \cdot t_{c}$ 397.5171 mm² = $\frac{3.1416 \cdot 40 \text{ mm}^{2}}{4} - 40 \text{ mm} \cdot 21.478 \text{ mm}$

2.4) Diameter of Rod of Cotter Joint given Socket Collar Diameter Formula (

 $d = \frac{d_4}{2.4} \qquad 33.3333 \, \text{mm} = \frac{80 \, \text{mm}}{2.4}$

2.5) Diameter of Rod of Cotter Joint given Spigot Collar Diameter Formula C

Formula Example with Units $d = \frac{d_3}{1.5}$ $32 \text{ mm} = \frac{48 \text{ mm}}{1.5}$

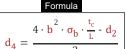
2.6) Diameter of Rod of Cotter Joint given Thickness of Cotter Formula 🗂

 $d = \frac{t_c}{0.31} \qquad 69.2839 \, \text{mm} = \frac{21.478 \, \text{mm}}{0.31}$

2.7) Diameter of Rod of Cotter Joint given Thickness of Spigot Collar Formula C

Example with Units $d = \frac{t_1}{0.45}$ 28.8889 mm = $\frac{13 \text{ mm}}{0.45}$

2.8) Diameter of Socket Collar given Rod Diameter Formula 🕝

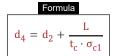

Formula
$$\frac{\mathbf{d_4} = 2.4 \cdot \mathbf{d}}{\mathbf{d_4}}$$

Example with Units

Evaluate Formula (

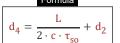
 $85.6385\,\mathrm{mm} = 2.4\cdot35.6827\,\mathrm{mm}$

2.9) Diameter of Socket Collar of Cotter Joint given Bending Stress in Cotter Formula 🕝


Evaluate Formula (

Evaluate Formula (

Evaluate Formula (


 $d_4 = \frac{4 \cdot b^2 \cdot \sigma_b \cdot \frac{t_c}{L} - d_2}{3} \left[178.0448 \, \text{mm} \right] = \frac{4 \cdot 48.5 \, \text{mm}^2 \cdot 98 \, \text{N/mm}^2 \cdot \frac{21.478 \, \text{mm}}{50000 \, \text{N}} - 40 \, \text{mm}}{3}$

2.10) Diameter of Socket Collar of Cotter Joint given Compressive Stress Formula 🕝

Example with Units

2.11) Diameter of socket collar of cotter joint given shear stress in socket Formula 🕝

Example with Units $d_4 = \frac{L}{2 \cdot c \cdot \tau_{so}} + d_2 \left| \quad 80 \, \text{mm} \right| = \frac{50000 \, \text{N}}{2 \cdot 25.0 \, \text{mm} \cdot 25 \, \text{N/mm}^2} + 40 \, \text{mm}$

2.12) Diameter of Spigot Collar given Rod Diameter Formula C

Example with Units

Evaluate Formula (

 $d_3 = 1.5 \cdot d$ 53.524 mm = 1.5 · 35.6827 mm

2.13) Diameter of Spigot of Cotter Joint given Bending Stress in Cotter Formula 🕝

Evaluate Formula

 $d_2 = 4 \cdot b^2 \cdot \sigma_b \cdot \frac{t_c}{L} - 2 \cdot d_4$

Example with Units

 $236.0895 \, \text{mm} = 4 \cdot 48.5 \, \text{mm}^{2} \cdot 98 \, \text{N/mm}^{2} \cdot \frac{21.478 \, \text{mm}}{50000 \, \text{m}} - 2 \cdot 80 \, \text{mm}$

2.14) Diameter of Spigot of Cotter Joint given Compressive Stress Formula 🕝

Example with Units

Evaluate Formula C

 $d_2 = d_4 - \frac{L}{t_c \cdot \sigma_{c1}} \left| \quad 40.0006 \, \text{mm} \right| = 80 \, \text{mm} - \frac{50000 \, \text{N}}{21.478 \, \text{mm} \cdot 58.2 \, \text{N/mm}^2}$

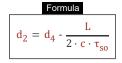
2.15) Diameter of Spigot of Cotter Joint given Shear Stress in Spigot Formula 🕝

Example with Units

Evaluate Formula (

Evaluate Formula (

Evaluate Formula (


Evaluate Formula (

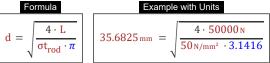
Evaluate Formula

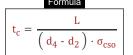
$$d_2 = \frac{L}{2 \cdot L_a \cdot \tau_{sp}}$$

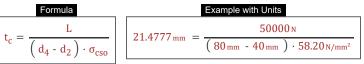
 $d_2 = \frac{L}{2 \cdot L_a \cdot \tau_{SD}} \left| \quad 39.9996 \,_{mm} \right| = \frac{50000 \,_{N}}{2 \cdot 23.5 \,_{mm} \cdot 26.596 \,_{N/mm^2}}$

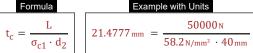
2.16) Inside Diameter of Socket of Cotter Joint given Shear Stress in Socket Formula 🕝

$$d_{2} = d_{4} - \frac{L}{2 \cdot c \cdot \tau_{so}} \qquad 40 \text{ mm} = 80 \text{ mm} - \frac{50000 \text{ N}}{2 \cdot 25.0 \text{ mm} \cdot 25 \text{ N/mm}^{2}}$$


2.17) Minimum Diameter of Spigot in Cotter Joint Subjected to Crushing Stress Formula 🕝


$d_2 = \frac{L}{\sigma_c \cdot t_c} \qquad 18.4759 \, \text{mm} = \frac{50000 \, \text{N}}{126 \, \text{N/mm}^2 \cdot 21.478 \, \text{mm}}$


2.18) Minimum Rod Diameter in Cotter Joint given Axial Tensile Force and Stress Formula 🕝


2.19) Thickness of Cotter given Compressive Stress in Socket Formula 🕝

2.20) Thickness of Cotter given Compressive Stress in Spigot Formula C

Evaluate Formula [

2.21) Thickness of Cotter given Shear Stress in Cotter Formula C

$$t_c = \frac{L}{2 \cdot \tau_{co} \cdot b} \qquad \begin{array}{|l|l|} \hline \text{Example with Units} \\ \hline \\ 21.4777 \, \text{mm} \end{array} = \frac{50000 \, \text{N}}{2 \cdot 24 \, \text{N/mm}^2 \cdot 48.5 \, \text{mm}} \\ \hline \end{array}$$

2.22) Thickness of Cotter given Tensile Stress in Socket Formula C

$$t_{c} = \frac{\left(\frac{\pi}{4} \cdot \left(d_{1}^{2} - d_{2}^{2}\right)\right) - \frac{F_{c}}{\sigma_{t}so}}{d_{1} - d_{2}}$$

Example with Units

$$68.5926 \, \text{mm} = \frac{\left(\frac{3.1416}{4} \cdot \left(54 \, \text{mm}^2 - 40 \, \text{mm}^2\right)\right) - \frac{5000 \, \text{N}}{68.224 \, \text{N/mm}^2}}{54 \, \text{mm} - 40 \, \text{mm}}$$

2.23) Thickness of Cotter Joint Formula [7]

Formula

Example with Units $t_c = 0.31 \cdot d$ | 11.0616 mm = 0.31 \cdot 35.6827 mm Evaluate Formula

Evaluate Formula

Evaluate Formula (

2.24) Thickness of Cotter Joint given Bending Stress in Cotter Formula [7]

 $t_{c} = \left(2 \cdot d_{4} + d_{2}\right) \cdot \left(\frac{L}{4 \cdot b^{2} \cdot \sigma_{b}}\right)$

Example with Units

$$10.845 \, \text{mm} \, = \, \left(\, 2 \cdot 80 \, \text{mm} \, + \, 40 \, \text{mm} \, \, \right) \cdot \left(\frac{50000 \, \text{N}}{4 \cdot 48.5 \, \text{mm}^{2} \cdot 98 \, \text{N/mm}^{2}} \right)$$

2.25) Thickness of Spigot Collar when Rod Diameter is Available Formula C

Example with Units Formula Example with Units $t_1 = 0.45 \cdot d \hspace{0.2cm} \boxed{ 16.0572 \, \text{mm} } = 0.45 \cdot 35.6827 \, \text{mm}$ Evaluate Formula (

Evaluate Formula C

2.26) Width of Cotter by Bending Consideration Formula C

Formula $b = \left(3 \cdot \frac{L}{t_c \cdot \sigma_b} \cdot \left(\frac{d_2}{4} + \frac{d_4 \cdot d_2}{6}\right)\right)^{0.5}$

$$34.4636 \, \text{mm} \ = \left(3 \cdot \frac{50000 \, \text{N}}{21.478 \, \text{mm} \, \cdot 98 \, \text{N/mm}^2} \cdot \left(\frac{40 \, \text{mm}}{4} + \frac{80 \, \text{mm} \, - 40 \, \text{mm}}{6}\right)\right)^{0.5}$$

2.27) Width of Cotter by Shear Consideration Formula [

Formula

$$b = \frac{V}{2 \cdot \tau_{co} \cdot t_{c}}$$

Evaluate Formula (

3) Strength and Stress Formulas (7)

3.1) Bending Stress in Cotter of Cotter Joint Formula C

 $\sigma_{b} = \left(3 \cdot \frac{L}{t_{a} \cdot b^{2}}\right) \cdot \left(\frac{d_{2} + 2 \cdot d_{4}}{12}\right)$

Evaluate Formula

Example with Units

$$49.4838 \,\text{N/mm}^2 = \left(3 \cdot \frac{50000 \,\text{N}}{21.478 \,\text{mm} \cdot 48.5 \,\text{mm}^2}\right) \cdot \left(\frac{40 \,\text{mm} + 2 \cdot 80 \,\text{mm}}{12}\right)$$

3.2) Compressive Stress in Socket of Cotter Joint given Diameter of Spigot and of Socket Collar Formula 🕝

Example with Units

$$\sigma_{\rm cso} = \frac{\rm L}{\left(\, d_4 - d_2 \, \right) \cdot t_{\rm c}} \left[58.1991 \, \rm N/mm^2 \, = \frac{50000 \, \rm N}{\left(\, 80 \, \rm mm \, - 40 \, mm \, \right) \cdot 21.478 \, mm} \right]$$

3.3) Compressive Stress in Spigot of Cotter Joint Considering Crushing Failure Formula 🕝

Formula Example with Units $\sigma_{c1} = \frac{L}{t_c \cdot d_2} \qquad 58.1991 \, \text{N/mm}^2 = \frac{50000 \, \text{N}}{21.478 \, \text{mm} \cdot 40 \, \text{mm}}$

Evaluate Formula (

Evaluate Formula (

3.4) Compressive Stress of Spigot Formula C

Formula

 $\sigma_{cp} = \frac{L}{t_c \cdot D_s} = \frac{50000 \,\text{N}}{46.5593 \,\text{N/mm}^2} = \frac{50000 \,\text{N}}{21.478 \,\text{mm} \cdot 50.0 \,\text{mm}}$

Evaluate Formula C

3.5) Permissible Shear Stress for Cotter Formula 🕝

Evaluate Formula (

3.6) Permissible Shear Stress for Spigot Formula 🕝

Example with Units

Evaluate Formula (

$$\tau_{\rm p} = \frac{\rm P}{2 \cdot \rm a \cdot \rm d_{\rm ex}}$$

$$\tau_{p} = \frac{P}{2 \cdot a \cdot d_{ex}} \qquad 957854.4061 \, \text{N/m}^{2} = \frac{1500 \, \text{N}}{2 \cdot 17.4 \, \text{mm} \cdot 45 \, \text{mm}}$$

3.7) Shear Stress in Cotter given Cotter Thickness and Width Formula C

Evaluate Formula

Evaluate Formula 🕝

Formula
$$\tau_{co} = \frac{L}{2 \cdot t_c \cdot b}$$

Formula Example with Units
$$\tau_{co} = \frac{L}{2 \cdot t_c \cdot b} \qquad 23.9996 \, \text{N/mm}^2 = \frac{50000 \, \text{N}}{2 \cdot 21.478 \, \text{mm} \cdot 48.5 \, \text{mm}}$$

3.8) Shear Stress in Socket of Cotter Joint given Inner and Outer Diameter of Socket Formula

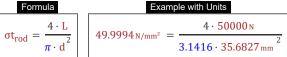
Example with Units

$$\tau_{so} = \frac{L}{2 \cdot \left(d_4 - d_2\right) \cdot c}$$

$$\tau_{\text{so}} = \frac{L}{2 \cdot \left(d_4 - d_2\right) \cdot c} \qquad \boxed{25 \, \text{N/mm}^2 = \frac{50000 \, \text{N}}{2 \cdot \left(80 \, \text{mm} - 40 \, \text{mm}\right) \cdot 25.0 \, \text{mm}}}$$

3.9) Shear Stress in Spigot of Cotter Joint given Diameter of Spigot and Load Formula 🕝

Formula


Example with Units

Evaluate Formula [

$$\tau_{\rm sp} = \frac{L}{2 \cdot L_{\rm a} \cdot d_2}$$

3.10) Tensile Stress in Rod of Cotter Joint Formula 🕝

Formula

Evaluate Formula (

3.11) Tensile Stress in Socket of Cotter Joint given Outer and Inner Diameter of Socket Formula 🕝

Formula

Evaluate Formula @

$$\sigma_{t}so = \frac{L}{\frac{\pi}{4} \cdot \left(d_{1}^{2} - d_{2}^{2}\right) - t_{c} \cdot \left(d_{1} - d_{2}\right)}$$

$$68.2229 \,\text{N/mm}^2 = \frac{50000 \,\text{N}}{\frac{3.1416}{4} \cdot \left(54 \,\text{mm}^2 - 40 \,\text{mm}^2\right) - 21.478 \,\text{mm} \cdot \left(54 \,\text{mm} - 40 \,\text{mm}\right)}$$

3.12) Tensile Stress in Spigot Formula

Formula

 $125.7808 \, \text{N/mm}^2 =$

$$= \frac{P}{\left(\frac{\pi}{2} \cdot d_{av}^{2}\right) - \left(d_{av} \cdot t_{c}\right)}$$

Evaluate Formula 🕝

Example with Units

$$2.4041 \,\mathrm{N/mm^2} = \frac{1500 \,\mathrm{N}}{\left(\frac{3.1416}{4} \cdot 45 \,\mathrm{mm}^2\right) - \left(45 \,\mathrm{mm} \cdot 21.478 \,\mathrm{mm}\right)}$$

3.13) Tensile Stress in Spigot of Cotter Joint given Diameter of Spigot, Thickenss of Cotter and Load Formula 🕝

Formula

Example with Units

50000 N

3.1416 · 40 mm ² - 40 mm · 21.478 mm

Evaluate Formula 🕝

$$\sigma_{t}sp = \frac{L}{\frac{\pi \cdot d_{2}^{2}}{4} - d_{2} \cdot t_{c}}$$

Variables used in list of Design of Cotter Joint Formulas above

- a Spigot Distance (Millimeter)
- A Cross Sectional Area of Socket (Square Millimeter)
- A_S Cross Sectional Area of Spigot (Square Millimeter)
- **b** Mean Width of Cotter (Millimeter)
- C Axial Distance From Slot to End of Socket Collar (Millimeter)
- **d** Diameter of Rod of Cotter Joint (Millimeter)
- d₁ Outside Diameter of Socket (Millimeter)
- d₂ Diameter of Spigot (Millimeter)
- d₃ Diameter of Spigot Collar (Millimeter)
- d₄ Diameter of Socket Collar (Millimeter)
- dex External Diameter of Spigot (Millimeter)
- Ds Spigot Diameter (Millimeter)
- Fc Force on Cotter Joint (Newton)
- L Load on Cotter Joint (Newton)
- La Gap between End of Slot to End of Spigot (Millimeter)
- P Tensile Force on Rods (Newton)
- t₁ Thickness of Spigot Collar (Millimeter)
- t_c Thickness of Cotter (Millimeter)
- **V** Shear Force on Cotter (Newton)
- σ_b Bending Stress in Cotter (Newton per Square Millimeter)
- σ_c Crushing Stress induced in Cotter (Newton per Square Millimeter)
- σ_{c1} Compressive Stress in Spigot (Newton per Square Millimeter)
- σ_{cp} Stress in Spigot (Newton per Square Millimeter)
- σ_{cso} Compressive Stress In Socket (Newton per Square Millimeter)
- σ_t Tensile Stress (Newton per Square Millimeter)

Constants, Functions, Measurements used in list of Design of Cotter Joint Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²)
 Area Unit Conversion
- Measurement: Pressure in Newton per Square Meter (N/m²)
 Pressure Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)
 Stress Unit Conversion

- σ_tso Tensile Stress In Socket (Newton per Square Millimeter)
- σ_tsp Tensile Stress In Spigot (Newton per Square Millimeter)
- σt_{rod} Tensile Stress in Cotter Joint Rod (Newton per Square Millimeter)
- T_{CO} Shear Stress in Cotter (Newton per Square Millimeter)
- T_{SO} Shear Stress in Socket (Newton per Square Millimeter)
- T_{Sp} Shear Stress in Spigot (Newton per Square Millimeter)
- $au_{\mathbf{p}}$ Permissible Shear Stress (Newton per Square Meter)

Download other Important Design of Coupling PDFs

- Important Design of Cotter Joint Formulas
- Important Design of Knuckle Joint Formulas (**)
- Important Design of Rigid Flange Coupling Formulas
- Important Packing Formulas

- Important Retaining Rings and Circlips
 Formulas
- Important Riveted Joints Formulas
- Important Seals Formulas
- Important Threaded Bolted Joints
 Formulas

Try our Unique Visual Calculators

- Percentage growth
- K LCM calculator

Implication Divide fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 10:03:58 AM UTC