Wichtig Grundformeln mechanischer Operationen Formeln PDF

Formeln Beispiele mit Einheiten

Liste von 21

Wichtig Grundformeln mechanischer Operationen Formeln

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

1) Angewandter Druck im Hinblick auf den Fließfähigkeitskoeffizienten für Feststoffe Formel

$$P_{A} = \frac{P_{N}}{K} \qquad 8.9982 \, P_{a} = \frac{15 \, P_{a}}{1.667}$$

$$=\frac{15 \, \text{Pa}}{1.667}$$

2) Anzahl der Partikel Formel

Formel

$$N_p = \frac{m}{\rho_{\text{particle}} \cdot V_{\text{particle}}}$$

Beispiel mit Einheiten

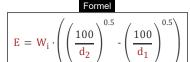
3) Bruchteil der Zykluszeit, der für die Kuchenbildung verwendet wird Formel 🕝

Formel Beispiel mit Einheiten $f = \frac{t}{t_c}$ $0.2 = \frac{0.8s}{4s}$

4) Druckgradient unter Verwendung der Kozeny-Carman-Gleichung Formel 🗂

 $dPbydr = \frac{150 \cdot \mu \cdot (1 - \eta)^2 \cdot v}{(\Phi_{ij})^2 \cdot (De)^2 \cdot (\eta)^3}$

$$10.3023\,\text{N/m}^3 = \frac{150\cdot 0.59\,\text{P}\,\cdot \left(1-0.5\,\right)^2\cdot 60\,\text{m/s}}{\left(18.46\,\right)^2\cdot \left(0.55\,\text{m}\,\right)^2\cdot \left(0.5\,\right)^3}$$


5) Endabsetzgeschwindigkeit eines einzelnen Teilchens Formel

$$V_t = \frac{V}{(\epsilon)^{1}}$$

Beispiel mit Einheiten

$$V_{t} = \frac{V}{(\epsilon)^{n}}$$
 $0.1989 \,\text{m/s} = \frac{0.1 \,\text{m/s}}{(0.75)^{2.39}}$

6) Energie, die benötigt wird, um grobe Materialien gemäß dem Bond-Gesetz zu zerkleinern Formel

Formel auswerten 🕝

Beispiel mit Einheiten

22.1506 J/kg =
$$11.6$$
 J/kg $\cdot \left(\left(\frac{100}{1.9 \, \text{m}} \right)^{0.5} - \left(\frac{100}{3.5 \, \text{m}} \right)^{0.5} \right)$

7) Erforderliche Zeit für die Kuchenbildung Formel

Formel auswerten 🕝

8) Fließfähigkeitskoeffizient von Feststoffen Formel

Formel Beispiel mit Einheiten
$$K = \frac{P_N}{P_A} \qquad \boxed{ 1.6667 = \frac{15\,P_a}{9\,P_a} }$$

Formel auswerten 🕝

9) Gesamtoberfläche der Partikel Formel 🕝 👚

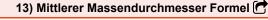
Formel auswerten

10) Gesamtoberfläche des Partikels unter Verwendung von Sperizität Formel 🕝

Formel Beispiel mit Einheiten
$$A_{Sa} = M \cdot \frac{6}{\Phi_p \cdot \rho_p \cdot d_p} \qquad 0.0163 \, \text{m}^2 = 50.12 \, \text{kg} \cdot \frac{6}{18.46 \cdot 100 \, \text{kg/m}^3 \cdot 10 \, \text{m}}$$

Formel auswerten 🕝

11) Gesamtzahl der Partikel in der Mischung Formel


Formel Beispiel mit Einheiten
$$N_T = \frac{M_T}{\rho_p \cdot V_p} \qquad 143 = \frac{14.3 \, \mathrm{kg}}{100 \, \mathrm{kg/m^3} \, \cdot .001 \, \mathrm{m^3}}$$

Formel auswerten

Formel auswerten 🕝

12) Materialkennlinie unter Verwendung des Reibungswinkels Formel

 $D_{W} = \left(x_{A} \cdot D_{pi}\right) \boxed{3_{m} = \left(0.6 \cdot 5_{m}\right)}$

Beispiel mit Einheiten

Formel auswerten [7]

14) Mittlerer Sauter-Durchmesser Formel C

Beispiel mit Einheiten $d_{sauter} = \frac{6 \cdot V_{particle_1}}{S_{particle}} \left[8.9423 \text{m} \right] = \frac{6 \cdot 15.5 \text{m}^3}{10.4 \text{m}^2}$ Formel auswerten [7]

15) Oberflächenformfaktor Formel (

 $\Phi_{\rm S} = \frac{1}{\Phi_{\rm p}} \qquad 0.0542 = \frac{1}{18.46}$

Formel auswerten

16) Porosität oder Hohlraumanteil Formel C

Beispiel mit Einheiten $\varepsilon = \frac{v_0}{v_{\rm p}} \left| \quad 0.0667 = \frac{0.02\,{\rm m}^3}{0.3\,{\rm m}^3} \right|$

Formel auswerten

17) Projizierte Fläche des Festkörpers Formel

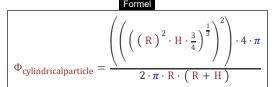
Formel

Beispiel mit Einheiten $A_{p} = 2 \cdot \frac{F_{D}}{C_{D} \cdot \rho_{l} \cdot \left(\left. v_{liauid} \right. \right)^{2}} \left| \right. \left| \right. 0.0647 \, \text{m}^{2} \right. \\ = 2 \cdot \frac{80 \, \text{N}}{1.98 \cdot 3.9 \, \text{kg/m}^{3} \cdot \left(\left. 17.9 \, \text{m/s} \right. \right)^{2}}$ Formel auswerten

18) Spezifische Oberfläche der Mischung Formel 🕝

Formel Beispiel mit Einheiten $A_{w} = \frac{\text{SA}_{Total}}{M_{T}} \left| \quad 3.7063\,\text{m}^{2}/\text{kg} \right| = \frac{53\,\text{m}^{2}}{14.3\,\text{kg}}$ Formel auswerten

19) Sphärizität des Partikels Formel


Formel auswerten

 $\Phi_{\rm p} = \frac{6 \cdot V_{\rm s}}{S_{\rm particle} \cdot {\rm De}} \left| 18.4615 = \frac{6 \cdot 17.6 \, {\rm m}^3}{10.4 \, {\rm m}^2 \cdot 0.55 \, {\rm m}} \right|$

20) Sphärizität des zylindrischen Teilchens Formel 🕝

Formel auswerten (

Beispiel mit Einheiten

$$0.8209 = \frac{\left(\left(\left(0.025\,\text{m}\right)^2 \cdot 0.11\,\text{m} \cdot \frac{3}{4}\right)^{\frac{1}{3}}\right)^2\right) \cdot 4 \cdot 3.1416}{2 \cdot 3.1416 \cdot 0.025\,\text{m} \cdot \left(0.025\,\text{m} + 0.11\,\text{m}\right)}$$

21) Sphärizität von quaderförmigen Partikeln Formel 🕝

Formel

$$\Phi_{\text{cuboidal particle}} = \frac{\left(\left(\left(L \cdot b \cdot h\right) \cdot \left(\frac{0.75}{\pi}\right)\right)^{\frac{1}{3}} \wedge 2\right) \cdot 4 \cdot \pi}{2 \cdot \left(L \cdot b + b \cdot h + h \cdot L\right)}$$

Beispiel mit Einheiten

$$0.1306 = \frac{\left(\left(\left(3_{m} \cdot 2_{m} \cdot 12_{m}\right) \cdot \left(\frac{0.75}{3.1416}\right)\right)^{\frac{1}{3}} \wedge 2\right) \cdot 4 \cdot 3.1416}{2 \cdot \left(3_{m} \cdot 2_{m} + 2_{m} \cdot 12_{m} + 12_{m} \cdot 3_{m}\right)}$$

In der Liste von Grundformeln mechanischer Operationen oben verwendete Variablen

- ← Hohlraumanteil
- A_p Projizierte Fläche eines festen Partikelkörpers (Quadratmeter)

(Quadratinotor)

- A_{sa} Gesamtoberfläche der Partikel (Quadratmeter)
- A_w Spezifische Oberfläche der Mischung (Quadratmeter pro Kilogramm)
- **b** Breite (Meter)
- C_D Widerstandskoeffizient
- **d**₁ Vorschubdurchmesser (*Meter*)
- **d**₂ Produktdurchmesser (Meter)
- d_n Arithmetischer mittlerer Durchmesser (Meter)
- D_{pi} Größe der im Bruchteil vorhandenen Partikel (Meter)
- d_{sauter} Mittlerer Sauter-Durchmesser (Meter)
- D_W Massenmittlerer Durchmesser (Meter)
- De Äquivalenter Durchmesser (Meter)
- dPbydr Druckgefälle (Newton / Kubikmeter)
- E Energie pro Masseneinheit Futter (Joule pro Kilogramm)
- f Bruchteil der Zykluszeit, der für die Kuchenbildung verwendet wird
- F_D Zugkraft (Newton)
- h Höhe (Meter)
- H Zylinderhöhe (Meter)
- K Fließfähigkeitskoeffizient
- K_M Materialeigenschaft
- L Länge (Meter)
- m Mischung Masse (Kilogramm)
- M Masse (Kilogramm)
- M_T Gesamtmasse der Mischung (Kilogramm)
- n Richardsonb Zaki Index
- N_p Anzahl der Partikel

Konstanten, Funktionen, Messungen, die in der Liste von Grundformeln mechanischer Operationen oben verwendet werden

- Konstante(n): pi,
 - 3.14159265358979323846264338327950288 Archimedes-Konstante
- Funktionen: sin, sin(Angle)
 Sinus ist eine trigonometrische Funktion, die das Verhältnis der Länge der gegenüberliegenden Seite eines rechtwinkligen Dreiecks zur Länge der Hypothenuse beschreibt.
- Messung: Länge in Meter (m)
 Länge Einheitenumrechnung
- Messung: Gewicht in Kilogramm (kg)
 Gewicht Einheitenumrechnung
- Messung: Zeit in Zweite (s)
 Zeit Einheitenumrechnung (
- Messung: Volumen in Kubikmeter (m³)

 Volumen Einheitenumrechnung
- Messung: Bereich in Quadratmeter (m²)
 Bereich Einheitenumrechnung
- Messung: Druck in Pascal (Pa)
 Druck Einheitenumrechnung (T)
- Messung: Geschwindigkeit in Meter pro Sekunde (m/s)
 Geschwindigkeit Einheitenumrechnung
- Messung: Macht in Newton (N)
 Macht Einheitenumrechnung
- Messung: Winkel in Grad (°)
 Winkel Einheitenumrechnung
- Messung: Dynamische Viskosität in Haltung (P)
 Dynamische Viskosität Einheitenumrechnung
- Dynamische Viskosität Einheitenumrechnung €

 Messung: Dichte in Kilogramm pro Kubikmeter
- Messung: Dichte in Kilogramm pro Kubikmetel (kg/m³)
 Dichte Einheitenumrechnung
- Messung: Spezifische Energie in Joule pro Kilogramm (J/kg)
 - Spezifische Energie Einheitenumrechnung
- Messung: Druckgefälle in Newton / Kubikmeter (N/m³)

N_T Gesamtzahl der Partikel in der Mischung

- P_A Angewandter Druck (Pascal)
- P_N Normaldruck (Pascal)
- FN Normaldruck (Fascal)
- R Zylinderradius (Meter)
- S Oberfläche eines Partikels (Quadratmeter)
- Sparticle Oberfläche des Partikels

(Quadratmeter)

- SA Oberfläche (Quadratmeter)
- SA_{Total} Gesamtfläche (Quadratmeter)
- t_c Gesamtzykluszeit (Zweite)
- **v** Geschwindigkeit (Meter pro Sekunde)
- V Absetzgeschwindigkeit einer Teilchengruppe (Meter pro Sekunde)

• t Benötigte Zeit für die Kuchenbildung (Zweite)

- v_0 Volumen der Hohlräume im Bett (Kubikmeter)
 - **v**_B Gesamtvolumen des Bettes (Kubikmeter)
- Vliquid Geschwindigkeit der Flüssigkeit (Meter pro Sekunde)
- V_p Volumen eines Teilchens (Kubikmeter)
- V_{particle} Volumen des kugelförmigen Teilchens (Kubikmeter)
- V_{particle 1} Partikelvolumen (Kubikmeter)
- V_s Volumen eines kugelförmigen Teilchens (Kubikmeter)
- V_t Endgeschwindigkeit eines einzelnen Teilchens (Meter pro Sekunde)
- Wi Arbeitsindex (Joule pro Kilogramm)
- X_A Massenanteil
- E Porosität oder Hohlraumanteil
- n Porosität
- µ Dynamische Viskosität (Haltung)
- ρ_I Dichte der Flüssigkeit (Kilogramm pro Kubikmeter)
- ρ_p Partikeldichte (Kilogramm pro Kubikmeter)
- Pparticle Dichte eines Teilchens (Kilogramm pro Kubikmeter)
- Paragraph
 Reibungswinkel (Grad)

Druckgefälle Einheitenumrechnung 🗂

 Messung: Spezifisches Gebiet in Quadratmeter pro Kilogramm (m^2/kg)

Spezifisches Gebiet Einheitenumrechnung

- • Cuboidalparticle Sphärizität eines quaderförmigen Teilchens
- Ocylindricalparticle Sphärizität zylindrischer Partikel
- Φ_p Sphärizität des Teilchens
- Φ_s Oberflächenformfaktor

Laden Sie andere Wichtig Grundlagen des mechanischen Betriebs-PDFs herunter

Wichtig Grundlegende Formeln
 Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- **K** Prozentualer Fehler **C**
- KGV von drei zahlen
- Image: Bruch subtrahieren

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 1:43:11 PM UTC