Wichtig Die schwedische Slip-Circle-Methode Formeln PDF

Formeln Beispiele mit Einheiten

Liste von 38

Wichtig Die schwedische Slip-Circle-**Methode Formeln**

1) Abstand zwischen Aktionslinie und Linie, die durch das Zentrum verläuft, bei mobilisierter Kohäsion Formel

$$\mathbf{x'} = \frac{\mathbf{c_m}}{\frac{\mathbf{W} \cdot \mathbf{d_{radial}}}{\mathbf{L'}}}$$

Beispiel mit Einheiten

$$0.8925_{\,\mathrm{m}} = \frac{3.57_{\,\mathrm{Pa}}}{\frac{8\,\mathrm{N} \cdot 1.5_{\,\mathrm{m}}}{3.0001_{\,\mathrm{m}}}}$$

2) Abstand zwischen der Wirkungslinie des Gewichts und der Linie, die durch das Zentrum verläuft Formel

$$x' = \frac{c_u \cdot L' \cdot d_{radial}}{W \cdot f_s}$$

Beispiel mit Einheiten

3) Abstand zwischen Wirkungslinie und Linie, die durch den Mittelpunkt bei gegebenem Antriebsmoment verläuft Formel

Beispiel mit Einheiten $x' = \frac{M_D}{W}$ 1.25 m = $\frac{10.0 \,\text{kN*m}}{8 \,\text{N}}$ Formel auswerten

Formel auswerten

Formel auswerten

4) Antriebsmoment bei gegebenem Gewicht des Bodens auf Keil Formel 🕝

$$M_D = W \cdot x'$$

Beispiel mit Einheiten

$$M_D = W \cdot x'$$
 $10 \, \text{kN*m} = 8 \, \text{N} \cdot 1.25 \, \text{m}$

5) Antriebsmoment bei gegebenem Radius des Gleitkreises Formel 🕝

 $M_D = r \cdot F_t$ | 6.6 kN*m = 0.6 m · 11.0 N

Formel auswerten

Beispiel mit Einheiten

Formel auswerten 🕝

 $M_{D} = \frac{M_{R}}{f_{s}} \left[16.0893 \, \text{kN*m} = \frac{45.05 \, \text{kN*m}}{2.8} \right]$

7) Bogenwinkel bei gegebener Länge des Gleitbogens Formel 🕝

Formel $\delta = \frac{360 \cdot L^{'}}{2 \cdot \pi \cdot d_{radial}} \cdot \left(\frac{\pi}{180}\right) \left| \quad 2.0001_{rad} \right| = \frac{360 \cdot 3.0001_{m}}{2 \cdot 3.1416 \cdot 1.5_{m}} \cdot \left(\frac{3.1416}{180}\right)$

Beispiel mit Einheiten

Formel auswerten

Formel auswerten

8) Einheit Kohäsion bei gegebener Summe der Tangentialkomponente Formel 🕝

 $c_{u} = \frac{\left(f_{s} \cdot F_{t}\right) - \left(\Sigma N \cdot \tan\left(\frac{\phi \cdot \pi}{180}\right)\right)}{I'}$

Beispiel mit Einheiten $10.2613\,Pa \,=\, \frac{\left(\,\,2.8\cdot11.0\,\text{N}\,\,\right)\,-\,\left(\,\,5.01\,\text{N}\,\,\cdot\,\tan\left(\,\,\frac{9.93\,^{\circ}\,\cdot\,3.1416}{180}\,\,\right)\,\right)}{3.0001\,\text{m}}$

9) Einheitskohäsion bei gegebener Widerstandskraft aus der Coulomb-Gleichung Formel 🕝

Beispiel mit Einheiten $c_{u} = \frac{F_{r} - (N \cdot tan((\varphi)))}{AT} \left[10.0019 Pa = \frac{35 N - (4.99 N \cdot tan((9.93^{\circ})))}{3.412 m} \right]$

10) Einheitskohäsion bei mobilisierter Scherfestigkeit des Bodens Formel 🗂

 $\begin{array}{c|c} \textbf{Formel} & \textbf{Beispiel mit Einheiten} \\ \hline c_u = f_{\text{S}} \cdot c_m & 9.996 \, \text{Pa} = 2.8 \cdot 3.57 \, \text{Pa} \\ \hline \end{array}$

Formel auswerten 🕝

Formel auswerten

11) Gesamtlänge des Gleitkreises bei gegebenem Widerstandsmoment Formel 🕝 Formel auswerten

 $L' = \frac{\left(\frac{M_R}{r}\right) - \left(\Sigma N \cdot tan\left(\left(\Phi_i\right)\right)\right)}{}$

Beispiel mit Einheiten $3.5032_{\,\mathrm{m}} \, = \, \frac{\left(\frac{45.05_{\,\mathrm{kN^*m}}}{0.6_{\,\mathrm{m}}}\right) - \left(\,5.01_{\,\mathrm{N}} \cdot \tan\left(\,\left(\,82.87^{\,\circ}\,\right)\,\right)\,\right)}$

12) Gewicht des Bodens auf dem Keil bei gegebenem mobilisierten Scherwiderstand des **Bodens Formel**

 $W = \frac{c_m}{\frac{x' \cdot d_{radial}}{r}}$

Beispiel mit Einheiten $5.7122 \,\mathrm{N} = \frac{3.57 \,\mathrm{Pa}}{\frac{1.25 \,\mathrm{m} + 1.5 \,\mathrm{m}}{3.0004}}$ Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten 🕝

13) Gewicht des Bodens auf dem Keil bei gegebenem Sicherheitsfaktor Formel 🦵

 $W = \frac{c_{\rm u} \cdot L^{'} \cdot d_{\rm radial}}{f_{\rm s} \cdot x'} \left| \begin{array}{c} 12.8576 \, \text{N} \end{array} \right| = \frac{10 \, \text{Pa} \cdot 3.0001 \, \text{m} \cdot 1.5 \, \text{m}}{2.8 \cdot 1.25 \, \text{m}}$

Beispiel mit Einheiten

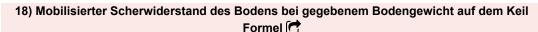
14) Kurvenlänge jeder Scheibe bei gegebener Widerstandskraft aus der Coulomb-Gleichung Formel

Beispiel mit Einheiten $\Delta L = \frac{F_r - (N \cdot tan((\phi)))}{c_{..}}$ $3.4126_m = \frac{35_N - (4.99_N \cdot tan((9.93^\circ)))}{10_{Pa}}$

15) Länge des Gleitbogens Formel C

Formel

Beispiel mit Einheiten $2 \cdot 3.1416 \cdot 1.5 \,\mathrm{m} \, \cdot 2.0001 \,\mathrm{rad} \, \cdot \left(\, \frac{180}{3.1416} \right)$


16) Länge des Gleitkreises bei gegebener Summe der Tangentialkomponenten Formel 🕝 Formel auswerten

 $L^{'} = \frac{\left(f_{s} \cdot F_{t}\right) \cdot \left(\Sigma N \cdot tan\left(\frac{\phi \cdot \pi}{180}\right)\right)}{C}$

Beispiel mit Einheiten $3.0785\,\text{m} \; = \; \frac{\left(\; 2.8 \cdot 11.0\,\text{N} \; \right) \, - \left(\; 5.01\,\text{N} \; \cdot \tan \left(\frac{9.93^{\circ} \; \cdot \; 3.1416}{180} \right) \right)}{1}$

17) Länge des Gleitlichtbogens bei gegebenem Sicherheitsfaktor Formel C

Beispiel mit Einheiten $L_{s'} = \frac{f_s}{\frac{c_u \cdot d_{radial}}{8^{N} \cdot 1.25 \text{ m}}} \left| \quad 1.8667 \text{ m} \right| = \frac{2.8}{\frac{10 \text{ Pa} \cdot 1.5 \text{ m}}{8^{N} \cdot 1.25 \text{ m}}}$

Beispiel mit Einheiten

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

 $c_{m} = \frac{W \cdot x' \cdot d_{radial}}{r'} = \frac{4.9998 \, P_{a}}{3.0001 \, m}$

19) Mobilisierter Scherwiderstand des Bodens bei gegebenem Sicherheitsfaktor Formel 🕝 Formel auswerten

20) Moment des Widerstands bei Einheitskohäsion Formel 🕝

Formel Beispiel mit Einheiten
$$M_R = \left(\begin{array}{ccc} c_u \cdot L^{'} \cdot d_{radial} \end{array} \right) \quad \boxed{ \begin{array}{ccc} 45.0015 \, \text{kN*m} = \left(\begin{array}{ccc} 10 \, \text{Pa} & 3.0001 \, \text{m} & 1.5 \, \text{m} \end{array} \right) }$$

21) Normale Komponente bei gegebener Widerstandskraft aus der Coulomb-Gleichung Formel

Beispiel mit Einheiter $F_{N} = \frac{F_{r} - \left(c_{u} \cdot \Delta L\right)}{\tan\left(\left(\varphi\right)\right)}$ $5.0266_{N} = \frac{35_{N} - \left(10_{Pa} \cdot 3.412_{m}\right)}{\tan\left(\left(9.93^{\circ}\right)\right)}$

22) Radialer Abstand vom Rotationszentrum bei gegebenem Sicherheitsfaktor Formel 🕝 Formel auswerten

Beispiel mit Einheiten $d_{radial} = \frac{f_{s}}{\frac{c_{u} \cdot L}{W \cdot x'}} = \frac{2.8}{\frac{10 \, Pa}{8 \, N} \cdot 1.25 \, m}$

23) Radialer Abstand vom Rotationszentrum bei gegebenem Widerstandsmoment Formel 🕝 Formel auswerten

Beispiel mit Einheiten

24) Radialer Abstand vom Rotationszentrum bei gegebener Länge des Gleitbogens Formel 🕝

Beispiel mit Einheiten $d_{radial} = \frac{360 \cdot L^{'}}{2 \cdot \pi \cdot \delta \cdot \left(\frac{180}{\pi}\right)} \left| \begin{array}{c} 1.5_{m} = \frac{360 \cdot 3.0001_{m}}{2 \cdot 3.1416 \cdot 2.0001_{rad} \cdot \left(\frac{180}{3.1416}\right)} \end{array} \right|$

25) Radialer Abstand vom Rotationszentrum bei gegebener mobilisierter Scherfestigkeit des Bodens Formel

Beispiel mit Einheiten Formel auswerten

26) Sicherheitsfaktor bei Einheitskohäsion Formel

Formel

Beispiel mit Einheiten Formel auswerten

27) Sicherheitsfaktor bei gegebenem Widerstandsmoment Formel 🕝

 $f_{S} = \frac{M_{R}}{M_{D}}$ $4.505 = \frac{45.05 \, \text{kN*m}}{10.0 \, \text{kN*m}}$

Formel auswerten

Formel auswerten

28) Sicherheitsfaktor bei gegebener Summe der Tangentialkomponente Formel 🕝

 $f_s = \frac{\left(c_u \cdot L'\right) + \left(\Sigma N \cdot \tan\left(\frac{\phi \cdot \pi}{180}\right)\right)}{\Gamma}$

Beispiel mit Einheiten $2.7287 = \frac{\left(10\,\text{Pa}\cdot3.0001\,\text{m}\right) + \left(5.01\,\text{N}\cdot\tan\left(\frac{9.93^{\circ}\cdot3.1416}{180}\right)\right)}{11.0}$

29) Sicherheitsfaktor bei mobilisierter Scherfestigkeit des Bodens Formel 🕝

 $f_s = \frac{c_u}{c_{--}}$ 2.8011 = $\frac{10_{Pa}}{3.57_{Pa}}$

Formel auswerten [

30) Summe der normalen Komponenten bei gegebenem Sicherheitsfaktor Formel 🕝

Formel auswerten

 $\Sigma F_{N} = \frac{\left(\ f_{s} \cdot F_{t} \right) \cdot \left(\ c_{u} \cdot L^{'} \right)}{\tan \left(\frac{\Phi_{i} \cdot \pi}{180} \right)} \ \left| \ \frac{31.6448 \, \text{N}}{\tan \left(\frac{40 \, \text{N}}{180} \right)} \right| \ \left| \ \frac{\left(\ 2.8 \cdot 11.0 \, \text{N} \ \right) \cdot \left(\ 10 \, \text{Pa} \cdot 3.0001 \, \text{m} \ \right)}{\tan \left(\frac{82.87 \cdot 3.1416}{180} \right)} \right|$

Beispiel mit Einheiten
$$\left(\frac{45.05\,{\rm kN^*m}}{0.6\,{\rm m}} \right) - \left(\ 10\,{\rm Pa} \ \cdot \ 3.00\,{\rm km} \right)$$

Formel auswerten

32) Summe der Tangentialkomponente bei gegebenem Antriebsmoment Formel 🕝

Formel auswerten

33) Summe der Tangentialkomponente bei gegebenem Sicherheitsfaktor Formel 🕝

$$F_{t} = \frac{\left(c_{u} \cdot L^{'} \right) + \left(\Sigma N \cdot tan\left(\frac{\phi \cdot \pi}{180} \right) \right)}{f_{S}}$$

Formel auswerten

Formel auswerten

Beispiel mit Einheiten

$$10.7201 \text{N} = \frac{\left(10 \text{Pa} \cdot 3.0001 \text{m}\right) + \left(5.01 \text{N} \cdot \tan\left(\frac{9.93^{\circ} \cdot 3.1416}{180}\right)\right)}{2.8}$$

34) Widerstand gegen die Kraft aus Coulombs Gleichung Formel

 $F_{r} = ((c_{u} \cdot \Delta L) + (N \cdot tan((\phi))))$

Beispiel mit Einheiten

 $34.9936 \text{ N} = \left(\left(10 \text{ Pa} \cdot 3.412 \text{ m} \right) + \left(4.99 \text{ N} \cdot \tan \left(\left(9.93^{\circ} \right) \right) \right) \right)$

35) Widerstandsmoment bei gegebenem Radius des Gleitkreises Formel 🗂 Formel auswerten

$$M_{R} = r \cdot \left(\left(c_{u} \cdot L' \right) + \left(\Sigma N \cdot tan\left(\left(\Phi_{i} \right) \right) \right) \right)$$

Beispiel mit Einheiten

 $42.0316 \, \text{kN*m} = 0.6 \, \text{m} \cdot \left(\left(10 \, \text{Pa} \cdot 3.0001 \, \text{m} \right) + \left(5.01 \, \text{N} \cdot \text{tan} \left(\left(82.87 \, ^{\circ} \right) \right) \right) \right)$

36) Widerstandsmoment bei gegebenem Sicherheitsfaktor Formel 🕝

Beispiel mit Einheiten $M_{r'} = f_s \cdot M_D$ $28 \, \text{kN*m} = 2.8 \cdot 10.0 \, \text{kN*m}$ Formel auswerten

Formel auswerten [

Formel auswerten [

$$\Phi_{i} = a \tan \left(\frac{\left(\frac{M_{R}}{r} \right) - \left(c_{u} \cdot L' \right)}{\Sigma N} \right)$$

Beispiel mit Einheiten

$$89.9962^{\circ} = a \tan \left(\frac{\left(\frac{45.05 \, \text{kN*m}}{0.6 \, \text{m}} \right) - \left(10 \, \text{Pa} \cdot 3.0001 \, \text{m} \right)}{5.01 \, \text{N}} \right)$$

38) Zusammenhalt der Einheit bei gegebenem Sicherheitsfaktor Formel 🕝

Formel

Beispiel mit Einheiten

 $6.222 \, Pa = 2.8 \cdot \frac{8 \, \text{N} \cdot 1.25 \, \text{m}}{3.0001 \, \text{m} \cdot 1.5 \, \text{m}}$

In der Liste von Die schwedische Slip-Circle-Methode Formeln oben verwendete Variablen

- c_m Mobilisierter Scherwiderstand des Bodens (Pascal)
- c_u Zusammenhalt der Einheit (Pascal)
- d_{radial} Radialer Abstand (Meter)
- F_N Normale Kraftkomponente in der Bodenmechanik (Newton)
- F_r Widerstandskraft (Newton)
- fs Sicherheitsfaktor
- F_t Summe aller tangentialen Komponenten in der Bodenmechanik (Newton)
- L_{s'} Länge des Gleitbogens mit Sicherheitsfaktor (Meter)
- L Länge des Gleitbogens (Meter)
- Mp Fahrmoment (Kilonewton Meter)
- M_r Widerstandsmoment mit Sicherheitsfaktor (Kilonewton Meter)
- M_R Moment des Widerstands (Kilonewton Meter)
- **N** Normale Kraftkomponente (Newton)
- r Radius des Gleitkreises (Meter)
- W Körpergewicht in Newton (Newton)
- x' Entfernung zwischen LOA und COR (Meter)
- δ Bogenwinkel (Bogenmaß)
- ΔL Kurvenlänge (Meter)
- ΣF_N Summe aller Normalkomponenten in der Bodenmechanik (Newton)
- ΣN Summe aller Normalkomponenten (Newton)
- φ Winkel der inneren Reibung (Grad)
- Φ_i Winkel der inneren Reibung des Bodens (*Grad*)

Konstanten, Funktionen, Messungen, die in der Liste von Die schwedische Slip-Circle-Methode Formeln oben verwendet werden

- Konstante(n): pi,
 3.14159265358979323846264338327950288
 Archimedes-Konstante
- Funktionen: atan, atan(Number)
 Mit dem inversen Tan wird der Winkel berechnet,
 indem das Tangensverhältnis des Winkels
 angewendet wird, das sich aus der
 gegenüberliegenden Seite dividiert durch die
 anliegende Seite des rechtwinkligen Dreiecks
 eraibt.
- Funktionen: tan, tan(Angle)
 Der Tangens eines Winkels ist ein
 trigonometrisches Verhältnis der Länge der einem
 Winkel gegenüberliegenden Seite zur Länge der
 an einen Winkel angrenzenden Seite in einem
 rechtwinkligen Dreieck.
- Messung: Länge in Meter (m)
 Länge Einheitenumrechnung
- Messung: Druck in Pascal (Pa)
 Druck Einheitenumrechnung
- Messung: Macht in Newton (N)
 Macht Einheitenumrechnung
- Messung: Winkel in Bogenmaß (rad), Grad (°)
 Winkel Einheitenumrechnung
- Messung: Moment der Kraft in Kilonewton Meter (kN*m)

Moment der Kraft Einheitenumrechnung

Laden Sie andere Wichtig Geotechnik-PDFs herunter

- · Wichtig Tragfähigkeit für Streifenfundamente für C Ф Böden Formeln (
- Wichtig Tragfähigkeit bindiger Böden Formeln (
- Wichtig Tragfähigkeit von nichtbindigem Boden Formeln
- Wichtig Tragfähigkeit von Böden Formeln (
- der Meyerhof-Analyse Formeln
- Wichtig Fundamentstabilitätsanalyse Formeln (
- Wichtig Atterberggrenzen Formeln
- Wichtig Tragfähigkeit des Bodens nach der Terzaghi-Analyse Formeln
- Wichtig Verdichtung des Bodens

Formeln (

- Wichtig Erdbewegung Formeln
- · Wichtig Seitendruck für bindigen und nichtbindigen Boden Formeln
- Wichtig Mindestfundamenttiefe nach Rankine-Analyse Formeln
- Wichtig Pfahlgründungen Formeln

- Wichtig Porosität der Bodenprobe Formeln (
- Wichtig Schaberproduktion Formeln
- Wichtig Versickerungsanalyse Formeln (
- Wichtig Hangstabilitätsanalyse mit der Bishops-Methode Formeln
- Wichtig Hangstabilitätsanalyse mit der Culman-Methode Formeln
- Wichtig Tragfähigkeit von Böden nach
 Wichtig Bodenursprung und seine Eigenschaften Formeln
 - Wichtig Spezifisches Gewicht des Bodens Formeln
 - Wichtig Stabilitätsanalyse unendlicher Steigungen Formeln
 - Wichtig Stabilitätsanalyse unendlicher Steigungen im Prisma Formeln 🕝
 - Wichtig Vibrationskontrolle beim Strahlen Formeln
 - Wichtig Hohlraumverhältnis der Bodenprobe Formeln
 - Wichtig Wassergehalt des Bodens und verwandte Formeln Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

Prozentualer Fehler 🗂

• KGV von drei zahlen

🛂 Bruch subtrahieren 🗂

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:51:24 AM UTC