Important Lateral Pressure for Cohesive and Non **Cohesive Soil Formulas PDF**

Formulas Examples with Units

List of 25

Important Lateral Pressure for Cohesive and Non **Cohesive Soil Formulas**

Evaluate Formula

Evaluate Formula 🕝

Evaluate Formula 🕝

Evaluate Formula

1) Coefficient of Active Pressure given Angle of Internal Friction of Soil Formula 🕝

$$\mathbf{K}_{\mathbf{A}} = \left(\tan \left(\left(45 \cdot \frac{\pi}{180} \right) - \left(\frac{\varphi}{2} \right) \right) \right)^{2}$$

$$K_{A} = \left(\tan \left(\left(45 \cdot \frac{\pi}{180} \right) - \left(\frac{\varphi}{2} \right) \right) \right)^{2} \left| \quad 0.1632 = \left(\tan \left(\left(45 \cdot \frac{3.1416}{180} \right) - \left(\frac{46^{\circ}}{2} \right) \right) \right)^{2} \right|$$

2) Coefficient of Active Pressure given Total Thrust from Soil for Level Surface Formula 🕝

$$K_{A} = \frac{2 \cdot P}{\gamma \cdot \left(h_{w}\right)^{2}}$$

$$K_{A} = \frac{2 \cdot P}{\gamma \cdot (h_{W})^{2}}$$
 0.1156 = $\frac{2 \cdot 10_{kN/m}}{18_{kN/m^{3}} \cdot (3.1_{m})^{2}}$

3) Coefficient of Passive Pressure given Angle of Internal Friction of Soil Formula 🗂

Formula

$$K_{p} = \left(\tan \left(\left(45 \cdot \frac{\pi}{180} \right) \cdot \left(\frac{\varphi}{2} \right) \right) \right)^{2}$$

Example with Units

$$K_{p} = \left(\tan\left(\left(45 \cdot \frac{\pi}{180}\right) - \left(\frac{\varphi}{2}\right)\right)\right)^{2} \boxed{0.1632 = \left(\tan\left(\left(45 \cdot \frac{3.1416}{180}\right) - \left(\frac{46^{\circ}}{2}\right)\right)\right)^{2}}$$

4) Coefficient of Passive Pressure given Thrust of Soil are Free to Move only Small Amount Formula (

$$K_{P} = \frac{2 \cdot P}{\gamma \cdot \left(h_{W}\right)^{2}}$$

Example with Units

$$K_{P} = \frac{2 \cdot P}{\gamma \cdot \left(h_{W}\right)^{2}}$$

$$0.1156 = \frac{2 \cdot 10 \, \text{kN/m}}{18 \, \text{kN/m}^{3} \cdot \left(3.1 \, \text{m}\right)^{2}}$$

5) Coefficient of Passive Pressure given Thrust of Soil that are Completely Restrained Formula

$$K_{p} = \frac{2 \cdot P}{v \cdot (h)}$$

$$K_{P} = \frac{2 \cdot P}{\gamma \cdot (h_{w})^{2}}$$
 0.1156 = $\frac{2 \cdot 10_{\text{kN/m}}}{18_{\text{kN/m}^{2}} \cdot (3.1_{\text{m}})^{2}}$

Evaluate Formula

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula

$$C = \left(0.25 \cdot \gamma \cdot h_{w} \cdot \sqrt{\overline{K_{A}}}\right) \cdot \left(0.5 \cdot \frac{P}{h_{w}} \cdot \sqrt{\overline{K_{A}}}\right)$$

$$4.7781\,{_{kPa}}\,=\left(\,0.25\cdot\,18\,{_{kN/m^2}}\,\cdot\,3.1_{\,m}\,\cdot\,\sqrt{0.15}\,\right) - \left(\,0.5\cdot\frac{10\,{_{kN/m}}}{3.1_{\,m}}\,\cdot\,\sqrt{0.15}\,\right)$$

7) Cohesion of soil given Total Thrust from Soil with Small Angles of Internal Friction Formula

Formula

$$C = \left(\left(0.25 \cdot \gamma \cdot h_{w} \right) \cdot \left(0.5 \cdot \frac{P}{h_{w}} \right) \right)$$

Example with Units

$$12.3371\,{}_{\text{kPa}}\,=\left(\,\left(\,0.25\cdot18\,{}_{\text{kN/m}^3}\,\cdot3.1\,\text{m}\,\,\right)\,-\left(\,0.5\cdot\frac{10\,{}_{\text{kN/m}}}{3.1\,\text{m}}\,\right)\right)$$

8) Height of Wall given Thrust of Soil that are Completely Restrained and Surface is Level Formula 🖰

$$h_{w} = \sqrt{\frac{2 \cdot P}{\gamma \cdot K_{P}}}$$

$$\boxed{ h_w = \sqrt{\frac{2 \cdot P}{\gamma \cdot K_P}} } \quad \boxed{ 2.6352_{\,m} \, = \sqrt{\frac{2 \cdot 10 \, \text{kN/m}}{18 \, \text{kN/m}^3 \, \cdot 0.16}} }$$

9) Height of Wall given Total Thrust of Soil that are Free to Move only Small Amount Formula 🗂 Evaluate Formula

$$h_{w} = \sqrt{\frac{2 \cdot P}{\gamma \cdot K_{p}}}$$

$$h_{w} = \sqrt{\frac{2 \cdot P}{\gamma \cdot K_{p}}} \qquad 2.6352 \, m = \sqrt{\frac{2 \cdot 10 \, \text{kN/m}}{18 \, \text{kN/m}^{3} \cdot 0.16}}$$

$$h_{w} = \sqrt{\frac{2 \cdot P}{\gamma \cdot K_{A}}}$$

$$h_{w} = \sqrt{\frac{2 \cdot P}{\gamma \cdot K_{A}}} \qquad 2.7217_{m} = \sqrt{\frac{2 \cdot 10_{kN/m}}{18_{kN/m^{3}} \cdot 0.15}}$$

11) Total Height of Wall given Total Thrust from Soil that are Completely Restrained Formula 🗂

Formula

$$h_{w} = \sqrt{\frac{2 \cdot P}{\gamma \cdot \cos(i) \cdot \left(\frac{\cos(i) + \sqrt{(\cos(i))^{2} \cdot (\cos(\phi))^{2}}}{\cos(i) \cdot \sqrt{(\cos(i))^{2} \cdot (\cos(\phi))^{2}}}\right)}}$$

Example with Units

$$0.5689 \, \text{m} \, = \, \sqrt{\frac{2 \cdot 10 \, \text{kN/m}}{18 \, \text{kN/m}^3 \cdot \cos \left(\, 30^\circ \, \right) \cdot \left(\frac{\cos \left(\, 30^\circ \, \right) + \sqrt{\left(\cos \left(\, 30^\circ \, \right) \right)^2 \cdot \left(\cos \left(\, 46^\circ \, \right) \right)^2}}{\cos \left(\, 30^\circ \, \right) \cdot \sqrt{\left(\cos \left(\, 30^\circ \, \right) \right)^2 \cdot \left(\cos \left(\, 46^\circ \, \right) \right)^2}} \right)}$$

12) Total Height of Wall given Total Thrust from Soil that are Free to move Formula 🗗

Evaluate Formula

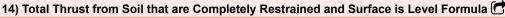
Evaluate Formula 🕝

Evaluate Formula (

$$h_{W} = \sqrt{\frac{2 \cdot P}{\gamma \cdot \cos\left(i\right) \cdot \left(\frac{\cos\left(i\right) \cdot \sqrt{\left(\cos\left(i\right)\right)^{2} \cdot \left(\cos\left(\phi\right)\right)^{2}}}{\cos\left(i\right) + \sqrt{\left(\cos\left(i\right)\right)^{2} \cdot \left(\cos\left(\phi\right)\right)^{2}}}\right)}}$$

Example with Units

$$2.2554_{m} = \sqrt{\frac{2 \cdot 10_{\text{kN/m}}}{18_{\text{kN/m}^{3}} \cdot \cos(30^{\circ}) \cdot \sqrt{\frac{\cos(30^{\circ}) \cdot \sqrt{(\cos(30^{\circ}))^{2} \cdot (\cos(46^{\circ}))^{2}}}{\cos(30^{\circ}) + \sqrt{(\cos(30^{\circ}))^{2} \cdot (\cos(46^{\circ}))^{2}}}}}$$


13) Total Thrust from Soil that are Completely Restrained Formula 🕝

ula.

$$P = \left(0.5 \cdot \gamma \cdot \left(h_{w}\right)^{2} \cdot \cos\left(i\right)\right) \cdot \left(\frac{\cos\left(i\right) + \sqrt{\left(\cos\left(i\right)\right)^{2} - \left(\cos\left(\phi\right)\right)^{2}}}{\cos\left(i\right) - \sqrt{\left(\cos\left(i\right)\right)^{2} - \left(\cos\left(\phi\right)\right)^{2}}}\right)$$

Example with Units

$$296.9695 \, \text{kN/m} \, = \left(0.5 \cdot 18 \, \text{kN/m}^3 \cdot \left(3.1 \, \text{m}\right)^2 \cdot \cos\left(30 \, ^\circ\right)\right) \cdot \left(\frac{\cos\left(30 \, ^\circ\right) + \sqrt{\left(\cos\left(30 \, ^\circ\right)\right)^2 - \left(\cos\left(46 \, ^\circ\right)\right)^2}}{\cos\left(30 \, ^\circ\right) - \sqrt{\left(\cos\left(30 \, ^\circ\right)\right)^2 - \left(\cos\left(46 \, ^\circ\right)\right)^2}}\right)$$

Evaluate Formula 🦳

 $P = \left(0.5 \cdot \gamma \cdot \left(h_{W}\right)^{2} \cdot K_{P}\right) \left[13.8384 \, \text{kN/m} = \left(0.5 \cdot 18 \, \text{kN/m}^{2} \cdot \left(3.1 \, \text{m}\right)^{2} \cdot 0.16\right)\right]$

15) Total Thrust from Soil that are Free to Move Formula [7]

Evaluate Formula (

Evaluate Formula 🕝

 $P = \left(0.5 \cdot \gamma \cdot \left(h_{w}\right)^{2} \cdot \cos\left(i\right)\right) \cdot \left(\frac{\cos\left(i\right) - \sqrt{\left(\cos\left(i\right)\right)^{2} - \left(\cos\left(\phi\right)\right)^{2}}}{\cos\left(i\right) + \sqrt{\left(\cos\left(i\right)\right)^{2} - \left(\cos\left(\phi\right)\right)^{2}}}\right)$

Example with Units

$$18.8921_{\text{kN/m}} = \left(0.5 \cdot 18_{\text{kN/m}^3} \cdot \left(3.1_{\text{m}}\right)^2 \cdot \cos\left(30^{\circ}\right)\right) \cdot \left(\frac{\cos\left(30^{\circ}\right) \cdot \sqrt{\left(\cos\left(30^{\circ}\right)\right)^2 - \left(\cos\left(46^{\circ}\right)\right)^2}}{\cos\left(30^{\circ}\right) + \sqrt{\left(\cos\left(30^{\circ}\right)\right)^2 - \left(\cos\left(46^{\circ}\right)\right)^2}}\right)$$

16) Total Thrust from Soil that are Free to Move only Small Amount Formula 🕝

 $P = \left(0.5 \cdot \gamma \cdot \left(h_{w}\right)^{2} \cdot K_{p}\right) \left[13.8384 \, \text{kN/m} \right] = \left(0.5 \cdot 18 \, \text{kN/m}^{3} \cdot \left(3.1 \, \text{m}\right)^{2} \cdot 0.16\right)$

17) Total Thrust from Soil that are Free to Move to Considerable Amount Formula 🕝

Evaluate Formula (

 $P = \left(\left(0.5 \cdot \gamma \cdot \left(h_w \right)^2 \cdot K_A \right) \cdot \left(2 \cdot C \cdot h_w \cdot \sqrt{K_A} \right) \right)$

 $9.9239\,{\text{kN/m}} \ = \left(\ \left(\ 0.5 \cdot 18\,{\text{kN/m}}^{\text{3}} \ \cdot \left(\ 3.1\,\text{m} \ \right)^{\,2} \cdot 0.15 \ \right) - \left(\ 2 \cdot 1.27\,{\text{kPa}} \ \cdot 3.1\,\text{m} \ \cdot \sqrt{0.15} \ \right) \right)$

18) Total Thrust from Soil when Surface behind Wall is Level Formula 🕝

Evaluate Formula

 $P = \left(0.5 \cdot \gamma \cdot \left(h_{W}\right)^{2} \cdot K_{A}\right) \left[12.9735 \, \text{kN/m} = \left(0.5 \cdot 18 \, \text{kN/m}^{3} \cdot \left(3.1 \, \text{m}\right)^{2} \cdot 0.15\right)\right]$

19) Total Thrust from Soil with Small Angles of Internal Friction Formula 🕝

Formula
$$P = \left(0.5 \cdot \gamma \cdot \left(h_{w}\right)^{2}\right) - \left(2 \cdot C \cdot h_{w}\right)$$

$$P = \left(0.5 \cdot \gamma \cdot \left(h_{W}\right)^{2}\right) \cdot \left(2 \cdot C \cdot h_{W}\right)$$

Example with Units

$$78.616 \, \text{kN/m} = \left(0.5 \cdot 18 \, \text{kN/m}^3 \cdot \left(3.1 \, \text{m}\right)^2\right) - \left(2 \cdot 1.27 \, \text{kPa} \cdot 3.1 \, \text{m}\right)$$

20) Unit Weight of Soil given Thrust of Soil that are Completely Restrained and Surface is Level Formula (

Example with Units

EvaluateFormula 🦳

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula 🕝

21) Unit Weight of Soil given Total Thrust from Soil for Level Surface behind Wall Formula 🕝

$$\gamma = \frac{2 \cdot P}{\left(h_{W}\right)^{2} \cdot K_{A}} = \frac{13.8744 \, \text{kN/m}^{3}}{\left(3.1 \, \text{m}\right)^{2} \cdot 0.15}$$

22) Unit Weight of Soil given Total Thrust from Soil that are Completely Restrained Formula 🕝

$$\gamma = \frac{2 \cdot P}{\left(h_{w}\right)^{2} \cdot \cos(i)} \cdot \left(\frac{\cos(i) + \sqrt{\left(\cos(i)\right)^{2} - \left(\cos(\phi)\right)^{2}}}{\cos(i) - \sqrt{\left(\cos(i)\right)^{2} - \left(\cos(\phi)\right)^{2}}}\right)$$

Example with Units

$$9.5278 \, \text{kN/m}^3 = \frac{2 \cdot 10 \, \text{kN/m}}{\left(3.1 \, \text{m}\right)^2 \cdot \cos\left(30^\circ\right)} \cdot \left(\frac{\cos\left(30^\circ\right) + \sqrt{\left(\cos\left(30^\circ\right)\right)^2 - \left(\cos\left(46^\circ\right)\right)^2}}{\cos\left(30^\circ\right) - \sqrt{\left(\cos\left(30^\circ\right)\right)^2 - \left(\cos\left(46^\circ\right)\right)^2}}\right)$$

23) Unit Weight of Soil given Total Thrust from Soil that are Free to Move Formula 🕝

Evaluate Formula 🕝

Evaluate Formula

$$\gamma = \frac{2 \cdot P}{\left(h_{w}\right)^{2} \cdot \cos(i)} \cdot \left(\frac{\cos(i) - \sqrt{\left(\cos(i)\right)^{2} - \left(\cos(\phi)\right)^{2}}}{\cos(i) + \sqrt{\left(\cos(i)\right)^{2} - \left(\cos(\phi)\right)^{2}}}\right)$$

Example with Units

$$0.6061 \, \text{kN/m}^{3} = \frac{2 \cdot 10 \, \text{kN/m}}{\left(3.1 \, \text{m}\right)^{2} \cdot \cos\left(30^{\circ}\right)} \cdot \left(\frac{\cos\left(30^{\circ}\right) \cdot \sqrt{\left(\cos\left(30^{\circ}\right)\right)^{2} \cdot \left(\cos\left(46^{\circ}\right)\right)^{2}}}{\cos\left(30^{\circ}\right) + \sqrt{\left(\cos\left(30^{\circ}\right)\right)^{2} \cdot \left(\cos\left(46^{\circ}\right)\right)^{2}}}\right)$$

24) Unit Weight of Soil given Total Thrust from Soil with Small Angles of Internal Friction Formula 🕝

Example with Units

$$3.7199 \, \text{kN/m}^{2} = \left(\left(2 \cdot \frac{10 \, \text{kN/m}}{\left(3.1 \, \text{m} \right)^{2}} \right) + \left(4 \cdot \frac{1.27 \, \text{kPa}}{3.1 \, \text{m}} \right) \right)$$

25) Unit Weight of Soil given Total Thrust of Soil that are Free to Move only Small Amount Formula (

$$\gamma = \frac{2 \cdot P}{\left(h_{w}\right)^{2} \cdot K_{P}}$$

Variables used in list of Lateral Pressure for Cohesive and Non Cohesive Soil Formulas above

- C Cohesion in Soil as Kilopascal (Kilopascal)
- h_w Total Height of Wall (Meter)
- i Angle of Inclination (Degree)
- K_A Coefficient of Active Pressure
- K_P Coefficient of Passive Pressure
- P Total Thrust of Soil (Kilonewton per Meter)
- V Unit Weight of Soil (Kilonewton per Cubic Meter)
- Φ Angle of Internal Friction (Degree)

Constants, Functions, Measurements used in list of Lateral Pressure for Cohesive and Non Cohesive Soil Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Functions: tan, tan(Angle)
 The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Pressure in Kilopascal (kPa)
 Pressure Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: Surface Tension in Kilonewton per Meter (kN/m)
 Surface Tension Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)
 - Specific Weight Unit Conversion

Download other Important Geotechnical Engineering PDFs

- Important Bearing Capacity for Strip Footing for C-Φ Soils Formulas
- Important Bearing Capacity of Cohesive
 Soil Formulas (*)
- Important Bearing Capacity of Noncohesive Soil Formulas
- Important Bearing Capacity of Soils Formulas
- Important Bearing Capacity of Soils:
 Meyerhof's Analysis Formulas (†)
- Important Foundation Stability Analysis
 Formulas (**)
- Important Atterberg Limits Formulas 🕝 •
- Important Bearing Capacity of Soil:
 Terzaghi's Analysis Formulas
- Important Compaction of Soil
 Formulas ()
- Important Earth Moving Formulas
- Important Lateral Pressure for Cohesive
 and Non Cohesive Soil Formulas
- Important Minimum Depth of Foundation by Rankine's Analysis Formulas

- Important Pile Foundations
 Formulas
- Important Scraper Production
 Formulas
 Important Seepage Analysis
- Formulas ()
 Important Slope Stability Analysis using
- Bishops Method Formulas Important Slope Stability Analysis using
- Culman's Method Formulas (*)
 Important Soil Origin and Its Properties
 Formulas (*)
- Important Specific Gravity of Soil Formulas (
 - Important Stability Analysis of Infinite Slopes in Prism Formulas
 - Important Vibration Control in Blasting Formulas
 Important Void Ratio of Soil Sample
 - Formulas

 Important Water Content of Soil and
 - Important Water Content of Soil and Related Formulas

Try our Unique Visual Calculators

- 🎇 Percentage change 🗂
- ELCM of two numbers

Proper fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 4:43:38 AM UTC