Wichtige Formeln bei der Strahlungswärmeübertragung Formeln PDF

Liste von 33

Wichtige Formeln bei der Strahlungswärmeübertragung Formeln

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

1) Absorptionsfähigkeit bei gegebenem Reflexionsvermögen und Durchlässigkeit Formel 🕝

2) Emissionskraft von Blackbody Formel 🕝

Formel Beispiel mit Einheiten
$$E_b = [Stefan-BoltZ] \cdot \left(T^4\right) \qquad 324.2963 \, \text{w/m}^2 = 5.7 \text{E-8} \cdot \left(275 \, \text{K}^4\right)$$

3) Emissionsvermögen des Körpers Formel C

$$\epsilon = \frac{E}{E_b} \qquad \text{Beispiel mit Einheiten}$$

$$\epsilon = \frac{E}{E_b} \qquad 0.95 = \frac{308.07 \, \text{W/m}^2}{324.29 \, \text{W/m}^2}$$

4) Emissionsvermögen von Nicht-Schwarzkörpern bei gegebenem Emissionsvermögen Formel

5) Energie jeder Quanta Formel

Formel Beispiel mit Einheiten
$$E_q = [hP] \cdot \nu \qquad 5E-19 \\ J = 6.6E-34 \cdot 7.5E+14 \\ Hz$$

6) Fläche von Oberfläche 1 bei gegebener Fläche 2 und Strahlungsformfaktor für beide Oberflächen Formel

Beispiel mit Einheiten

Formel auswerten

$$A_2 = A_1 \cdot \left(\frac{F_{12}}{F_{21}}\right)$$

$$49.9917 m^2 = 34.74 m^2 \cdot \left(\frac{0.59}{0.41}\right)$$

8) Formfaktor 12 bei gegebenem Flächeninhalt und Formfaktor 21 Formel 🕝

Formel Beispiel mit Einheiten
$$F_{12} = \left(\frac{A_2}{A_1}\right) \cdot F_{21} \qquad 0.5901 = \left(\frac{50 \, \text{m}^2}{34.74 \, \text{m}^2}\right) \cdot 0.41$$

9) Formfaktor 21 bei gegebener Fläche sowohl der Oberfläche als auch Formfaktor 12 Formel

 $F_{21} = F_{12} \cdot \left(\frac{A_1}{A_2}\right) \qquad 0.4099 = 0.59 \cdot \left(\frac{34.74 \,\mathrm{m}^2}{50 \,\mathrm{m}^2}\right)$

Beispiel mit Einheiten

Formel auswerten

10) Frequenz bei Lichtgeschwindigkeit und Wellenlänge Formel [7]

 $v = \frac{[c]}{\lambda}$ 7.5E+14Hz = $\frac{3E+8m/s}{400 \text{ nm}}$

Formel auswerten (

11) Gesamtwiderstand bei Strahlungswärmeübertragung bei gegebenem Emissionsgrad und Anzahl der Abschirmungen Formel

Formel

 $R = (n+1) \cdot \left(\left(\frac{2}{\epsilon} \right) - 1 \right)$ 3.3158 = $(2+1) \cdot \left(\left(\frac{2}{0.95} \right) - 1 \right)$

Formel auswerten

12) Maximale Wellenlänge bei gegebener Temperatur Formel C

Formel Beispiel mit Einheiten $\lambda_{Max} = \frac{2897.6}{T_R} \qquad 499586.2069 \, \mu \text{m} = \frac{2897.6}{5800 \, \text{k}}$

Formel auswerten

13) Netto-Energieaustritt bei gegebener Radiosität und Bestrahlung Formel 🕝

Formel auswerten

14) Nettowärmeaustausch bei gegebener Fläche 1 und Formfaktor 12 Formel 🕝

$$Q_{1-2} = A_1 \cdot F_{12} \cdot \left(E_{b1} - E_{b2} \right)$$

Beispiel mit Einheiten

 $3176.973 w = 34.74 m^2 \cdot 0.59 \cdot (680 w/m^2 - 525 w/m^2)$

15) Nettowärmeaustausch bei gegebener Fläche 2 und Formfaktor 21 Formel 🕝

Formel Beispiel mit Einheiten
$$Q_{1-2} = A_2 \cdot F_{21} \cdot \left(E_{b1} - E_{b2} \right) \qquad 3177.5 \text{w} = 50 \, \text{m}^2 \cdot 0.41 \cdot \left(680 \, \text{w/m}^2 - 525 \, \text{w/m}^2 \right)$$

16) Nettowärmeaustausch zwischen zwei Oberflächen bei gegebener Radiosität für beide Oberflächen Formel

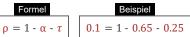
Formel
$$q_{1-2} = \frac{J_1 - J_2}{\frac{1}{A_1 \cdot F_{12}}}$$

Beispiel mit Einheiten

17) Netto-Wärmeübertragung von der Oberfläche bei Emissivität, Radiosität und Emissionsleistung Formel Formel auswerten

 $\mathbf{q} = \left(\frac{\left(\varepsilon \cdot \mathbf{A} \right) \cdot \left(\mathbf{E}_{\mathbf{b}} - \mathbf{J} \right)}{1 - \varepsilon} \right)$

$$15568.353 \text{w} = \left(\frac{\left(0.95 \cdot 50.3 \,\text{m}^2\right) \cdot \left(324.29 \,\text{w/m}^2 - 308 \,\text{w/m}^2\right)}{1 \cdot 0.95}\right)$$


18) Radiosity bei gegebener Emissionsleistung und Bestrahlung Formel Formel auswerten 🕝

 $J = (\varepsilon \cdot E_b) + (\rho \cdot G)$

$$J = (\epsilon \cdot E_b) + (\rho \cdot G)$$

Beispiel mit Einheiten $308.1555 \text{ W/m}^2 = (0.95 \cdot 324.29 \text{ W/m}^2) + (0.10 \cdot 0.80 \text{ W/m}^2)$

19) Reflektierte Strahlung bei gegebenem Absorptions- und Transmissionsvermögen Formel

Formel auswerten 🕝

Formel auswerten 🕝

Formel auswerten

Formel auswerten [

20) Reflektivität bei gegebener Absorption für Blackbody Formel

Formel auswerten (

Formel auswerten [

Formel auswerten

Formel auswerten

Formel auswerten

Formel Beispiel
$$\rho = 1 - \alpha \qquad 0.35 = 1 - 0.65$$

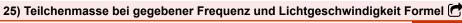
21) Reflexionsgrad bei gegebenem Emissionsgrad für Schwarzkörper Formel

22) Strahlungstemperatur bei maximaler Wellenlänge Formel

23) Strahlungswärmeübertragung zwischen Ebene 1 und Abschirmung bei gegebener Temperatur und Emissionsgrad beider Oberflächen Formel

$$q = A \cdot [Stefan-BoltZ] \cdot \frac{\left(T_{P1}^{4}\right) - \left(T_{3}^{4}\right)}{\left(\frac{1}{\epsilon_{1}}\right) + \left(\frac{1}{\epsilon_{3}}\right) - 1}$$

Beispiel mit Einheiten


$$699.4575 w = 50.3 m^{2} \cdot 5.7E-8 \cdot \frac{\left(452 \kappa^{4}\right) - \left(450 \kappa^{4}\right)}{\left(\frac{1}{0.4}\right) + \left(\frac{1}{0.67}\right) - 1}$$

24) Strahlungswärmeübertragung zwischen Ebene 2 und Strahlungsschild bei gegebener Temperatur und Emissionsgrad Formel

$$q = A \cdot [Stefan\text{-BoltZ}] \cdot \frac{\left(T_3^4\right) - \left(T_{P2}^4\right)}{\left(\frac{1}{\epsilon_3}\right) + \left(\frac{1}{\epsilon_2}\right) - 1}$$

Beispiel mit Einheiten

$$1336.2002 \,\mathrm{w} \,=\, 50.3 \,\mathrm{m}^2 \cdot 5.7 \,\mathrm{E} \cdot 8 \cdot \frac{\left(450 \,\mathrm{K}^4\right) - \left(445 \,\mathrm{K}^4\right)}{\left(\frac{1}{0.67}\right) + \left(\frac{1}{0.3}\right) - 1}$$

Beispiel mit Einheiten

Formel auswerten

$$\mathbf{m} = [\mathbf{hP}] \cdot \frac{\mathbf{v}}{[\mathbf{c}]^2}$$

 $m = [hP] \cdot \frac{v}{[c]^2}$ 5.5E-36kg = 6.6E-34 \cdot \frac{7.5E+14Hz}{3E+8m/s^2}

26) Temperatur des Strahlungsschildes, der zwischen zwei parallelen, unendlichen Ebenen mit gleichem Emissionsgrad platziert ist Formel

Formel

 $T_3 = \left(0.5 \cdot \left(\left(T_{P1}^{4} \right) + \left(T_{P2}^{4} \right) \right) \right)^{\frac{1}{4}}$

Beispiel mit Einheiten

$$448.541 \kappa = \left(0.5 \cdot \left(\left(452 \kappa^{4}\right) + \left(445 \kappa^{4}\right)\right)\right)^{\frac{1}{4}}$$

27) Transmissivität Gegebene Reflektivität und Absorptionsfähigkeit Formel C

$$\tau = 1 - \alpha - \rho$$
 0.25 = 1 - 0.65 - 0.10

28) Wärmeübertragung zwischen einem kleinen konvexen Objekt in einem großen Gehäuse Formel

Formel

Formel auswerten

$$\mathsf{q} = \mathsf{A}_1 \cdot \mathsf{\epsilon}_1 \cdot [\mathsf{Stefan}\text{-}\mathsf{BoltZ}] \cdot \left(\left(\left. \mathsf{T_1}^4 \right) \cdot \left(\left. \mathsf{T_2}^4 \right) \right) \right)$$

Beispiel mit Einheiten

$$902.2712 w = 34.74 m^{2} \cdot 0.4 \cdot 5.7 E-8 \cdot \left(\left(202 \kappa^{4} \right) - \left(151 \kappa^{4} \right) \right)$$

29) Wärmeübertragung zwischen konzentrischen Kugeln Formel 🕝

$$q = \frac{A_1 \cdot [Stefan\text{-BoltZ}] \cdot \left(\left(T_1^4 \right) \cdot \left(T_2^4 \right) \right)}{\left(\frac{1}{\epsilon_1} \right) + \left(\left(\left(\frac{1}{\epsilon_2} \right) - 1 \right) \cdot \left(\left(\frac{r_1}{r_2} \right)^2 \right) \right)}$$

731.5713w =
$$\frac{34.74 \, \text{m}^2 \cdot 5.7 \text{E-8} \cdot \left(\left(202 \, \text{K}^4 \right) - \left(151 \, \text{K}^4 \right) \right)}{\left(\frac{1}{0.4} \right) + \left(\left(\left(\frac{1}{0.3} \right) - 1 \right) \cdot \left(\left(\frac{10 \, \text{m}}{20 \, \text{m}} \right)^2 \right) \right)}$$

Wärmeübertragung zwischen zwei langen konzentrischen Zylindern bei gegebener Temperatur, Emissionsgrad und Fläche beider Oberflächen Formel

$$q = \frac{\left(\left[Stefan\text{-BoltZ} \right] \cdot A_1 \cdot \left(\left(\left. T_1 \right.^4 \right) - \left(\left. T_2 \right.^4 \right) \right) \right)}{\left(\left. \frac{1}{\epsilon_1} \right) + \left(\left(\left. \frac{A_1}{A_2} \right) \cdot \left(\left(\left. \frac{1}{\epsilon_2} \right) - 1 \right) \right) \right)}$$

Formel auswerten

Formel auswerten

$$547.3353w = \frac{\left(5.7E - 8 \cdot 34.74 \,\mathrm{m}^2 \cdot \left(\left(202 \,\mathrm{K}^4\right) - \left(151 \,\mathrm{K}^4\right)\right)\right)}{\left(\frac{1}{0.4}\right) + \left(\left(\frac{34.74 \,\mathrm{m}^2}{50 \,\mathrm{m}^2}\right) \cdot \left(\left(\frac{1}{0.3}\right) - 1\right)\right)}$$

31) Wärmeübertragung zwischen zwei unendlichen parallelen Ebenen bei gegebener Temperatur und Emissivität beider Oberflächen Formel

$$q = \frac{A \cdot [Stefan\text{-BoltZ}] \cdot \left(\left(\left.T_1^{4}\right) - \left(\left.T_2^{4}\right)\right)\right)}{\left(\frac{1}{\epsilon_1}\right) + \left(\frac{1}{\epsilon_2}\right) - 1}$$

Beispiel mit Einheiten

675.7228w =
$$\frac{50.3 \,\mathrm{m}^2 \cdot 5.7 \text{E-8} \cdot \left(\left(202 \,\mathrm{K}^4 \right) - \left(151 \,\mathrm{K}^4 \right) \right)}{\left(\frac{1}{0.4} \right) + \left(\frac{1}{0.3} \right) - 1}$$

32) Wellenlänge gegebene Lichtgeschwindigkeit und Frequenz Formel C

Beispiel mit Einheiten

$$399.7233 \, \text{nm} = \frac{3E + 8 \, \text{m/s}}{7.5E + 14 \, \text{Hz}}$$

Formel auswerten [

33) Widerstand bei der Strahlungswärmeübertragung, wenn keine Abschirmung vorhanden ist und der Emissionsgrad gleich ist Formel

Beispiel

Formel auswerten [

$$R = \left(\frac{2}{\varepsilon}\right) - 1 \qquad 1.1053 = \left(\frac{2}{0.95}\right) - 1$$

In der Liste von Wichtige Formeln bei der Strahlungswärmeübertragung oben verwendete Variablen

- A Bereich (Quadratmeter)
- A₁ Körperoberfläche 1 (Quadratmeter)
- A₂ Körperoberfläche 2 (Quadratmeter)
- E Emissionskraft von Nicht-Schwarzkörpern (Watt pro Quadratmeter)
- E_b Emissionskraft des Schwarzen K\u00f6rpers (Watt pro Quadratmeter)
- E_{b1} Emissionskraft des 1. Schwarzkörpers (Watt pro Quadratmeter)
- E_{b2} Emissionskraft des 2. Schwarzkörpers (Watt pro Quadratmeter)
- E_a Energie jeder Quanta (Joule)
- F₁₂ Strahlungsformfaktor 12
- F₂₁ Strahlungsformfaktor 21
- **G** Bestrahlung (Watt pro Quadratmeter)
- J Radiosität (Watt pro Quadratmeter)
- J₁ Radiosität des 1. Körpers (Watt pro Quadratmeter)
- J₂ Radiosität des 2. Körpers (Watt pro Quadratmeter)
- m Teilchenmasse (Kilogramm)
- n Anzahl der Schilde
- q Wärmeübertragung (Watt)
- q₁₋₂ Strahlungswärmeübertragung (Watt)
- Q₁₋₂ Nettowärmeübertragung (Watt)
- R Widerstand
- r₁ Radius der kleineren Kugel (Meter)
- r₂ Radius der größeren Kugel (Meter)
- T Temperatur des schwarzen Körpers (Kelvin)
- T₁ Oberflächentemperatur 1 (Kelvin)
- T₂ Temperatur der Oberfläche 2 (Kelvin)
- T₃ Temperatur des Strahlungsschildes (Kelvin)

Konstanten, Funktionen, Messungen, die in der Liste von Wichtige Formeln bei der Strahlungswärmeübertragung oben verwendet werden

- Konstante(n): [c], 299792458.0
 Lichtgeschwindigkeit im Vakuum
- Konstante(n): [hP], 6.626070040E-34
 Planck-Konstante
- Konstante(n): [Stefan-BoltZ], 5.670367E-8
 Stefan-Boltzmann Constant
- Messung: Länge in Meter (m)
 Länge Einheitenumrechnung
- Messung: Gewicht in Kilogramm (kg)
 Gewicht Einheitenumrechnung
- Messung: Temperatur in Kelvin (K)
 Temperatur Einheitenumrechnung ()
- Messung: Bereich in Quadratmeter (m²)
 Bereich Einheitenumrechnung
- Messung: Energie in Joule (J)
 Energie Einheitenumrechnung
- Messung: Leistung in Watt (W)
 Leistung Einheitenumrechnung
- Messung: Frequenz in Hertz (Hz)
 Frequenz Einheitenumrechnung
- Messung: Wellenlänge in Nanometer (nm), Mikrometer (µm)
 Wellenlänge Einheitenumrechnung
- Messung: Wärmestromdichte in Watt pro Quadratmeter (W/m²)
 Wärmestromdichte Einheitenumrechnung

- T_{P1} Temperatur von Flugzeug 1 (Kelvin)
- T_{P2} Temperatur von Flugzeug 2 (Kelvin)
- T_R Strahlungstemperatur (Kelvin)
- α Absorptionsfähigkeit
- ε Emissionsgrad
- ε₁ Emissionsgrad von Körper 1
- ε₂ Emissionsgrad von Körper 2
- ε₃ Emissionsgrad des Strahlungsschildes
- λ Wellenlänge (Nanometer)
- λ_{Max} Maximale Wellenlänge (Mikrometer)
- **v** Frequenz (Hertz)
- P Reflexionsvermögen
- τ Transmissionsfähigkeit

Laden Sie andere Wichtig Strahlung-PDFs herunter

- Wichtig Strahlungsaustausch mit spiegelnden Oberflächen Formeln (*)
 - Wichtig Strahlungsformeln Formeln 🕝 absorbierenden Medium zwischen zwo
- Wichtig Strahlungswärmeübertragung
 Formeln
- aus einem sendenden und absorbierenden Medium zwischen zwei Ebenen. Formeln

Wichtig Strahlungssystem bestehend

Probieren Sie unsere einzigartigen visuellen Rechner aus

- Prozentualer Wachstum
- KGV rechner

• 🌇 Dividiere bruch 🕝

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 1:32:34 PM UTC