Important Surveying Vertical Curves Formulas PDF

Formulas Examples with Units

List of 19

Important Surveying Vertical Curves Formulas

1) Allowable Centrifugal Acceleration given Length Formula 🕝

$$f = ((g_1) - (g_2)) \cdot \frac{V^2}{100 \cdot L_c}$$

Example with Units

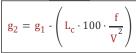
2) Change of Grade given Length Formula C

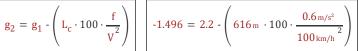
Example with Units $N = L \cdot P_{N} \qquad 1.4 = 20 \,\mathrm{m} \cdot 0.07$

Evaluate Formula

Evaluate Formula (

Evaluate Formula


Evaluate Formula [


Evaluate Formula [

Evaluate Formula (

3) Downgrade given Length based on Centrifugal Ratio Formula 🕝

Formula

4) Length given S is Less than L and Change of Grade Formula 🕝

$$L_{c} = N \cdot \frac{SD^{2}}{800 \cdot h}$$

$$L_{c} = N \cdot \frac{SD^{2}}{800 \cdot h} \qquad 635.5588_{m} = 3.6 \cdot \frac{490_{m}^{2}}{800 \cdot 1.7_{m}}$$

5) Length of Curve Based on Centrifugal Ratio Formula C

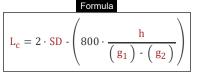
$$L_{c} = \left(\left(g_{1} \right) \cdot \left(g_{2} \right) \right) \cdot \frac{V^{2}}{100 \cdot f}$$

Example with Units

$$L_{c} = ((g_{1}) - (g_{2})) \cdot \frac{V^{2}}{100 \cdot f}$$

$$616.6667 \text{ m} = ((2.2) - (-1.5)) \cdot \frac{100 \text{ km/h}^{2}}{100 \cdot 0.6 \text{ m/s}^{2}}$$

6) Length of Curve given Change in Grade where S is more than L Formula 🗂


$$L_{c} = 2 \cdot SD - \left(800 \cdot \frac{h}{N}\right)$$

Example with Units

$$L_{c} = 2 \cdot SD - \left(800 \cdot \frac{h}{N}\right)$$

$$602.2222 m = 2 \cdot 490 m - \left(800 \cdot \frac{1.7 m}{3.6}\right)$$

7) Length of Curve when Height of Observer and Object are Same Formula 🕝

Example with Units $612.4324_{\rm m} = 2 \cdot 490_{\rm m} - \left(800 \cdot \frac{1.7_{\rm m}}{(2.2) - (-1.5)}\right)$

8) Length of Curve when S is Less than L Formula [7]

Example with Units $L_{c} = SD^{2} \cdot \frac{\left(g_{1}\right) \cdot \left(g_{2}\right)}{200 \cdot \left(\boxed{H} + \boxed{h_{2}}\right)^{2}} \left| 705.2362_{m} = 490_{m}^{2} \cdot \frac{\left(2.2\right) \cdot \left(-1.5\right)}{200 \cdot \left(\boxed{1.2_{m}} + \boxed{2_{m}}\right)^{2}} \right|$

9) Length of Curve when S is Less than L and h1 and h2 are same Formula 🕝

Formula

Example with Units $L_{c} = ((g_{1}) - (g_{2})) \cdot \frac{SD^{2}}{800 \cdot h} \bigg| \bigg| 653.2132_{m} = ((2.2) - (-1.5)) \cdot \frac{490_{m}^{2}}{800 \cdot 1.7_{m}}$

10) Length of Curve when Sight Distance is More Formula [7]

Formula $L_{c} = 2 \cdot SD - \frac{200 \cdot \left(\sqrt{H} + \sqrt{h_{2}}\right)^{2}}{\left(\sigma_{c}\right) \cdot \left(\sigma_{c}\right)}$

> Example with Units $639.5467 \,\mathrm{m} = 2 \cdot 490 \,\mathrm{m} - \frac{200 \cdot \left(\sqrt{1.2 \,\mathrm{m}} + \sqrt{2 \,\mathrm{m}}\right)^2}{\left(2.2 \,\mathrm{m} + \sqrt{2.2 \,\mathrm{m}}\right)^2}$

11) Length of Vertical Curve Formula C

Example with Units Evaluate Formula (

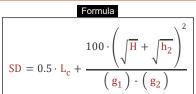
Evaluate Formula

Evaluate Formula [

Evaluate Formula (

Evaluate Formula 🕝

12) Permissible Grade given Length Formula 🕝


Formula Example w
$$P_{N} = \frac{N}{L}$$

$$0.18 =$$

Evaluate Formula (

Formula Example with Units
$$P_N = \frac{N}{L} \qquad 0.18 = \frac{3.6}{20 \, \text{m}}$$

13) Sight Distance when Length of Curve is Less Formula [

Evaluate Formula

Example with Units
$$\frac{100 \cdot \left(\sqrt{1.2\,\text{m}} + \sqrt{2\,\text{m}}\right)^2}{\left(2.2\,\right) \cdot \left(-1.5\,\right)}$$

14) Sight Distance when Length of Curve is Less and Both Height of Observer and Object is Same Formula

Formula $SD = \left(\frac{L_c}{2}\right) + \left(400 \cdot \frac{h}{\left(g_1\right) - \left(g_2\right)}\right)$ Evaluate Formula (

Example with Units
$$491.7838_{m} = \left(\frac{616_{m}}{2}\right) + \left(400 \cdot \frac{1.7_{m}}{(2.2) - (-1.5)}\right)$$

15) Sight Distance when S is Less than L Formula C

Formula

Formula Example with Units
$$S = \left(\frac{1}{c}\right) \cdot \left(\sqrt{H} + \sqrt{h_2}\right)$$

$$5.0193 \, \text{m} = \left(\frac{1}{0.5}\right) \cdot \left(\sqrt{1.2 \, \text{m}} + \sqrt{2 \, \text{m}}\right)$$

Evaluate Formula 🕝

Evaluate Formula (

16) Sight Distance when S is Less than L and h1 and h2 are same Formula [7]

Example with Units

$$SD = \sqrt{\frac{800 \cdot h \cdot L_c}{(g_1) \cdot (g_2)}} \sqrt{\frac{475.8378 \, m}{(2.2) \cdot (-1.5)}}$$

17) Tangential Correction Formula

$$c = \frac{g_1 - g_2}{\cdots} \cdot n$$

$$c = \frac{g_1 - g_2}{4} \cdot n \qquad 0.4162 = \frac{2.2 - -1.5}{4} \cdot 0.45$$

18) Upgrade given Length based on Centrifugal Ratio Formula 🕝

Formula

$$g_1 = \left(L_c \cdot 100 \cdot \frac{f}{v^2}\right) + \left(g_2\right)$$

Example with Units

Evaluate Formula (

Evaluate Formula (

Evaluate Formula

$$g_{1} = \left(L_{c} \cdot 100 \cdot \frac{f}{V^{2}}\right) + \left(g_{2}\right) \left[2.196 = \left(616 \text{ m} \cdot 100 \cdot \frac{0.6 \text{ m/s}^{2}}{100 \text{ km/h}^{2}}\right) + \left(-1.5\right)\right]$$

19) Velocity given Length Formula 🕝

Formula

$$V = \sqrt{\frac{L_c \cdot 100 \cdot f}{C}}$$

Example with Units

$$V = \begin{bmatrix} \frac{L_c \cdot 100 \cdot f}{g_1 - (g_2)} \end{bmatrix} = 99.9459 \, \text{km/h} = \sqrt{\frac{616 \, \text{m} \cdot 100 \cdot 0.6 \, \text{m/s}^2}{2.2 - (-1.5)}}$$

Variables used in list of Surveying Vertical Curves Formulas above

- **c** Tangential Correction
- f Allowable Centrifugal Acceleration (Meter per Square Second)
- g₁ Upgrade
- g₂ Downgrade
- h Height of Vertical Curves (Meter)
- **H** Height of Observer (*Meter*)
- h₂ Height of Object (Meter)
- L Length of Vertical Curve (Meter)
- Lc Length of Curve (Meter)
- n Number of Chords
- N Change in Grade
- P_N Permissible Rate
- S Sight Distance (Meter)
- SD Sight Distance SSD (Meter)
- **V** Vehicle Velocity (Kilometer per Hour)

Constants, Functions, Measurements used in list of Surveying Vertical Curves Formulas above

- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Speed in Kilometer per Hour (km/h)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)

 Acceleration Unit Conversion

Download other Important Surveying Formulas PDFs

- Compass Surveying Formulas
- Important Compass Surveying Formulas (
- Important Electromagnetic Distance Measurement Formulas
- Important Measurement of Distance with Tapes Formulas
- Important Surveying Curves Formulas (

- Important Photogrammetry Stadia and Important Surveying Vertical Curves Formulas (
 - Important Theory of Errors Formulas
 - Important Transition Curves Surveying Formulas (
 - Important Traversing Formulas
 - Important Vertical Control Formulas (*)

Try our Unique Visual Calculators

- M Percentage decrease
- HCF of three numbers

Multiply fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 4:29:35 AM UTC