Important Transition Curves Surveying Formulas PDF

Formulas Examples with Units

List of 21

Important Transition Curves Surveying Formulas

Evaluate Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula C

Evaluate Formula

1) Length of Transition Curve Formulas (

1.1) Hands-Off Velocity Formula 🕝

$$v = \sqrt{g \cdot R \cdot \tan(\theta)}$$

Example with Units

$$13.3546 \,\text{m/s} = \sqrt{9.8 \,\text{m/s}^2 \cdot 50 \,\text{m} \cdot \tan(20^\circ)}$$

1.2) Length given Angle of Super Elevation Formula C

Formula

$$L_{a} = \left(g \cdot tan\left(\theta_{e}\right)\right)^{1.5} \cdot \frac{\sqrt{R_{Curve}}}{\alpha}$$

Example with Units

$$146.2214_{\text{m}} = \left(9.8_{\text{m/s}^2} \cdot \tan(95.4)\right)^{1.5} \cdot \frac{\sqrt{200_{\text{m}}}}{10_{\text{m/s}^2}}$$

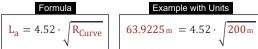
1.3) Length of Transition Curve given Shift Formula 🕝

$$L_{a} = \sqrt{S \cdot 24 \cdot R_{Curve}}$$

Example with Units

$$L_{a} = \sqrt{S \cdot 24 \cdot R_{Curve}} \qquad 120 \, \text{m} = \sqrt{3 \, \text{m} \cdot 24 \cdot 200 \, \text{m}}$$

1.4) Length of Transition Curve given Time Rate Formula 🗗


$$L_a = G \cdot \frac{V^3}{x \cdot g \cdot R_{Curve}}$$

$$L_a = G \cdot \frac{V^3}{x \cdot g \cdot R_{Curve}} \qquad \boxed{ 108.8435 \, \text{m} \, = \, 0.90 \, \text{m} \, \cdot \frac{80 \, \text{km/h}^3}{60 \, \text{cm/s} \, \cdot \, 9.8 \, \text{m/s}^2 \, \cdot \, 200 \, \text{m} } }$$

1.5) Length when Comfort Condition Holds Good for Highways Formula C

1.6) Length when Comfort Condition Holds Good for Railways Formula 🗂

Example with Units

Evaluate Formula (

1.7) Rate of Change of Radial Acceleration Formula 🕝

Formula

$$\alpha = \left(\frac{V^2}{R_{Curve} \cdot t}\right) \qquad \boxed{ \begin{array}{c} \text{Example with Units} \\ \\ 10\,\text{m/s}^2 \end{array} = \left(\frac{80\,\text{km/h}}{200\,\text{m}\,\cdot 3.2\,\text{s}}\right) }$$

Evaluate Formula [

1.8) Shift of Curve Formula C

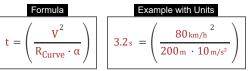
$$S = \frac{{L_a}^2}{24 \cdot R_{Curve}}$$

Formula Example with Units
$$S = \frac{L_a^2}{24 \cdot R_{Correc}}$$

$$4.3802 \text{ m} = \frac{145 \text{ m}^2}{24 \cdot 200 \text{ m}}$$

1.9) Time Rate given Length of Transition Curve Formula

$$x = G \cdot \frac{V^3}{L_a \cdot g \cdot R_{Curve}}$$


$$x = G \cdot \frac{V^{3}}{L_{a} \cdot g \cdot R_{Curve}} \qquad 45.0387 \, cm/s = 0.90 \, m \cdot \frac{80 \, km/h}{145 \, m \cdot 9.8 \, m/s^{2} \cdot 200 \, m}$$

Evaluate Formula (

Evaluate Formula [

1.10) Time Taken given Radial Acceleration Formula

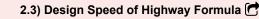
$$t = \left(\frac{V^2}{R_{Curve} \cdot \alpha}\right)$$

Evaluate Formula

2) Centrifugal Ratio Formulas 🕝

2.1) Centrifugal Force Acting on Vehicle Formula 🗂

$$F_{c} = \frac{W \cdot V^{2}}{g \cdot R_{Curve}}$$


Formula Example with Units
$$F_{c} = \frac{W \cdot V^{2}}{g \cdot R_{Curve}} \qquad \boxed{166.5306 \, \text{N} \, = \, \frac{51 \, \text{kg} \cdot 80 \, \text{km/h}^{\, 2}}{9.8 \, \text{m/s}^{\, 2} \cdot 200 \, \text{m}}}$$

Evaluate Formula [

2.2) Centrifugal Ratio Formula C

Formula Example with Units $PW_{ratio} = \frac{V^2}{R_{Curve} \cdot g} \quad 3.2653 = \frac{80 \, \text{km/h}^2}{200 \, \text{m} \cdot 9.8 \, \text{m/e}^2}$

Evaluate Formula C

Example with Units

Evaluate Formula (

$$V_1 = \sqrt{\frac{R_{Curve} \cdot g}{4}}$$

 $V_1 = \sqrt{\frac{R_{Curve} \cdot g}{4}}$ | 22.1359 km/h = $\sqrt{\frac{200 \text{ m} \cdot 9.8 \text{ m/s}^2}{4}}$

2.4) Design Speed of Railway Formula C

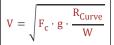
 $v_2 = \sqrt{R_{Curve} \cdot \frac{g}{8}}$ $4.3479 \,\text{m/s} = \sqrt{200 \,\text{m} \cdot \frac{9.8 \,\text{m/s}^2}{8}}$

Evaluate Formula (

2.5) Radius of Curve given Centrifugal Force Formula

Evaluate Formula [

$$R_{\text{Curve}} = \frac{W \cdot V^2}{g \cdot F}$$


 $R_{Curve} = \frac{W \cdot V^2}{g \cdot F_c} \left| \quad 204.332 \,\text{m} \right| = \frac{51 \,\text{kg} \cdot 80 \,\text{km/h}^2}{9.8 \,\text{m/s}^2 \cdot 163 \,\text{N}}$

2.6) Speed of Vehicle given Centrifugal Force Formula

Formula

Example with Units

Evaluate Formula (

 $V = \sqrt{F_c \cdot g \cdot \frac{R_{Curve}}{W}} \hspace{0.2cm} \left| \hspace{0.2cm} 79.1474 \, \text{km/h} \hspace{0.2cm} = \sqrt{163 \, \text{N} \, \cdot 9.8 \, \text{m/s}^2 \, \cdot \frac{200 \, \text{m}}{51 \, \text{kg}}} \right|$

3) Superelevation Formulas (?

3.1) Cant given Width of Pavement Formula 🕝

Formula

Example with Unit

Evaluate Formula C

 $h = B \cdot \frac{V^2}{R \cdot g} \qquad 90.1224_{cm} = 6.9_{m} \cdot \frac{80_{km/h}^2}{50_{m} \cdot 9.8_{m/s^2}}$

3.2) Gauge Width of Track given Cant Formula 🕝

Example with Units

Evaluate Formula 🕝

$$G = \frac{h \cdot 1.27 \cdot R}{V^2}$$

$$0.9071_{m} = \frac{91.42_{cm} \cdot 1.27 \cdot 50_{m}}{80_{km/h}^{2}}$$

3.3) Pavement Width given Cant Formula 🕝

Formula

Evaluate Formula (

$$B = h \cdot \frac{R \cdot g}{V^2}$$
 6.9993 m = 91.42 cm \cdot \frac{50 \text{ m} \cdot 9.8 \text{ m/s}^2}{80 \text{ km/h}^2}

3.4) Radius of Curve given Cant for Road Formula

Formula

Example with Units

Evaluate Formula 🕝

$$R = B \cdot \frac{V^2}{h \cdot g}$$

$$49.2903\,\mathrm{m} \; = \; 6.9\,\mathrm{m} \; \cdot \frac{80\,\mathrm{km/h}^{\;\;2}}{91.42\,\mathrm{cm} \; \cdot 9.8\,\mathrm{m/s^2}}$$

3.5) Railway Cant Formula 🗂

Formula

Example with Units

Evaluate Formula 🕝

$$\mathbf{h} = \mathbf{G} \cdot \frac{\mathbf{V}^2}{1.27 \cdot \mathbf{R}}$$

$$90.7087_{\text{cm}} = 0.90_{\text{m}} \cdot \frac{80_{\text{km/h}}^2}{1.27 \cdot 50_{\text{m}}}$$

Variables used in list of Transition Curves Surveying Formulas above

- **B** Pavement Width (Meter)
- F_c Centrifugal Force (Newton)
- g Acceleration due to Gravity (Meter per Square Second)
- **G** Railway Gauge (Meter)
- h Cant (Centimeter)
- La Transition Curve Length (Meter)
- PW_{ratio} Centrifugal Ratio
- R Radius of Curve (Meter)
- R_{Curve} Curve Radius (Meter)
- S Shift (Meter)
- t Time taken to Travel (Second)
- **V** Hands off Velocity (Meter per Second)
- **V** Vehicle Velocity (Kilometer per Hour)
- V₁ Design Speed on Highways (Kilometer per Hour)
- V₂ Design Speed on Railways (Meter per Second)
- W Weight of Vehicle (Kilogram)
- X Super Elevation Time Rate (Centimeter per Second)
- α Rate of Radial Acceleration (Meter per Square Second)
- **0** Angle of Super Elevation (Degree)
- θ_a Super Elevation Angle

Constants, Functions, Measurements used in list of Transition Curves Surveying Formulas above

- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Functions: tan, tan(Angle)

 The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m), Centimeter (cm)
 - Length Unit Conversion 🕝
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s), Kilometer per Hour (km/h), Centimeter per Second (cm/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)

 Acceleration Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion

Download other Important Surveying Formulas PDFs

- Compass Surveying Formulas
- Important Compass Surveying Formulas (
- Important Electromagnetic Distance Measurement Formulas
- Important Measurement of Distance with Tapes Formulas
- Important Surveying Curves Formulas (

- Important Photogrammetry Stadia and Important Surveying Vertical Curves Formulas (
 - Important Theory of Errors Formulas (
 - Important Transition Curves Surveying Formulas (
 - Important Traversing Formulas
 - Important Vertical Control Formulas (*)

Try our Unique Visual Calculators

Percentage share

• HCF of two numbers

Improper fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 4:21:36 AM UTC