Important Heat Exchanger and its Effectiveness Formulas PDF

Variables used in list of Heat Exchanger and its Effectiveness Formulas above

- A Area of Heat Exchanger (Square Meter)
- A_i Inside Tube Surface Area (Square Meter)
- Ao Outside Tube Surface Area (Square Meter)
- **C** Specific Heat Capacity (Joule per Kilogram per K)
- C Capacity Rate (Watt per Kelvin)
- C_C Specific Heat Capacity of Cold Fluid (Joule per Kilogram per K)
- **c**_h Specific Heat Capacity of Hot Fluid (Joule per Kilogram per K)
- Cmin Minimum Capacity Rate (Watt per Kelvin)
- d_i Inside Tube Diameter (Meter)
- do Outside Tube Diameter (Meter)
- F Correction Factor
- hinside Inside Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- h_{outside} External Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- **k** Thermal Conductivity (Watt per Meter per K)
- m Mass Flow Rate (Kilogram per Second)
- m_c Mass of Cold Fluid (Kilogram)
- m_h Mass of Hot Fluid (Kilogram)
- NTU Number of Heat Transfer Units
- q Heat Transfer (Watt)
- Q Heat (Joule)
- Q_{Actual} Actual Rate of Heat Transfer (Joule per Second)
- Q_{Max} Maximum Possible Rate of Heat Transfer (Joule per Second)
- **R**_f Fouling Factor (Square Meter Kelvin per Watt)
- R_i Fouling Factor on Inside of Tube (Square Meter Kelvin per Watt)
- R_o Fouling Factor on Outside of Tube (Square Meter Kelvin per Watt)

Constants, Functions, Measurements used in list of Heat Exchanger and its Effectiveness Formulas above

- Functions: In, In(Number) The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Functions: modulus, modulus Modulus of a number is the remainder when that number is divided by another number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Temperature in Kelvin (K) Temperature Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Power in Watt (W)
 Power Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))
 Thermal Conductivity Unit Conversion C
- Measurement: Specific Heat Capacity in Joule per Kilogram per K (J/(kg*K)) Specific Heat Capacity Unit Conversion
- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m^{2*}K) Heat Transfer Coefficient Unit Conversion
- Measurement: Rate of Heat Transfer in Joule per Second (J/s) Rate of Heat Transfer Unit Conversion
- Measurement: Fouling Factor in Square Meter Kelvin per Watt (m²K/W) Fouling Factor Unit Conversion
- Measurement: Heat Capacity Rate in Watt per Kelvin (W/K)

- T_{ci} Inlet Temperature of Cold Fluid (Kelvin)
- Tco Outlet Temperature of Cold Fluid (Kelvin)
- T_{hi} Inlet Temperature of Hot Fluid (Kelvin)
- Tho Outlet Temperature of Hot Fluid (Kelvin)
- **U** Overall Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- **U**_d Overall Heat Transfer Coefficient after Fouling (Watt per Square Meter per Kelvin)
- ΔT_m Log Mean Temperature Difference (Kelvin)
- ΔT_{Max HE} Maximum Temperature Difference in Heat Exchanger (*Kelvin*)
- ΔT_{Min Fluid} Temperature Difference of Minimum Fluid (Kelvin)
- € Effectiveness of Heat Exchanger
- $\boldsymbol{\epsilon}_{C}$ Effectiveness of HE when Cold Fluid is Min Fluid
- ε_h Effectiveness of HE when Hot Fluid is Min Fluid

Heat Capacity Rate Unit Conversion 🕝

Download other Important Heat Transfer PDFs

 Important Basics of Heat Transfer Formulas (*) Important Co-Relation of Dimensionless Numbers Formulas (*) Important Heat Exchanger Formulas (*) 	 Important Heat Transfer from Extended Surfaces (Fins) Formulas (*) Important Thermal Resistance Formulas (*) Important Unsteady State Heat Conduction Formulas (*)
Try our Unique Visual Calculators	
 Percentage increase Mixed fraction 	• 🎆 HCF calculator 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 1:19:11 PM UTC