Wichtig Wasserhaushaltsgleichung für ein **Einzugsgebiet Formeln PDF**

Formeln Beispiele mit Einheiten

Liste von 20

Wichtig Wasserhaushaltsgleichung für ein Einzugsgebiet Formeln

1) Abflussverluste im Verhältnis Niederschlag-Abfluss Formel C

Beispiel mit Einheiten $L = P - S_r$ | $49.95 \,\mathrm{m}^3 = 50 \,\mathrm{mm} - 0.05 \,\mathrm{m}^3/\mathrm{s}$

2) Änderung der Wasserspeicherung im Einzugsgebiet Formel 🕝

Formel

Beispiel mit Einheiten $S = \Delta S + \Delta Sm + \Delta Ss$ $18 \,\mathrm{m}^3 = 7 \,\mathrm{m}^3 + 6 \,\mathrm{m}^3 + 5.0 \,\mathrm{m}^3$ Formel auswerten

Formel auswerten

Formel auswerten

3) Bodenfeuchtigkeitsspeicherung bei Wasserspeicherung Formel 🕝

Formel

 $\Delta Sm = S - \Delta Ss - \Delta S$

Beispiel mit Einheiten

 $6\,\mathrm{m}^3 = 18\,\mathrm{m}^3 - 5.0\,\mathrm{m}^3 - 7\,\mathrm{m}^3$

4) Durchschnittliches jährliches Hochwasser vorgeschlagen vom Natural Environment Research Council Formel

Formel auswerten

 $Q_{mean} = C_{NERC} \cdot A_{NERC}^{0.94} \cdot SF^{0.27} \cdot S_{C}^{0.16} \cdot SO^{1.23} \cdot RSMD^{1.03} \cdot (1+a)^{-0.85}$

Beispiel mit Einheiten

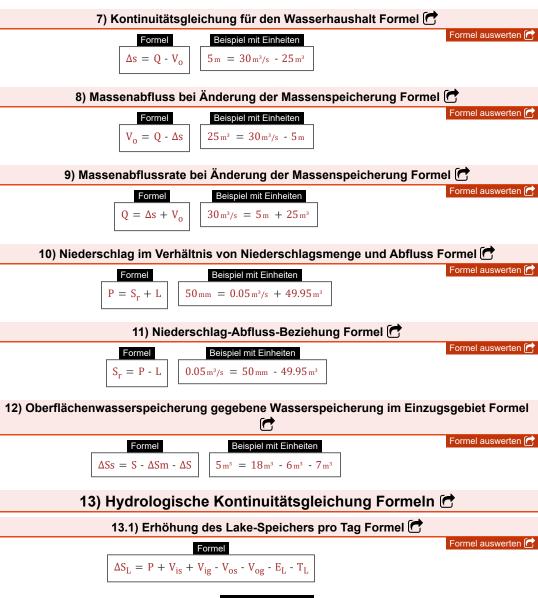
 $25.045\,\mathrm{m}^{_{3}/\mathrm{s}}\,=\,0.0315\,\cdot\,7.6^{}\,\cdot\,5.5^{}\,\cdot\,8.7^{}\,\cdot\,8.9^{}\,\cdot\,49.2^{}\,\cdot\,\left(\,1\,+\,24\,\mathrm{m}^{_{2}}\,\,\right)^{}$

5) Einzugsgebiet mit Spitzenabfluss in der Jarvis-Formel Formel

Beispiel mit Einheiten

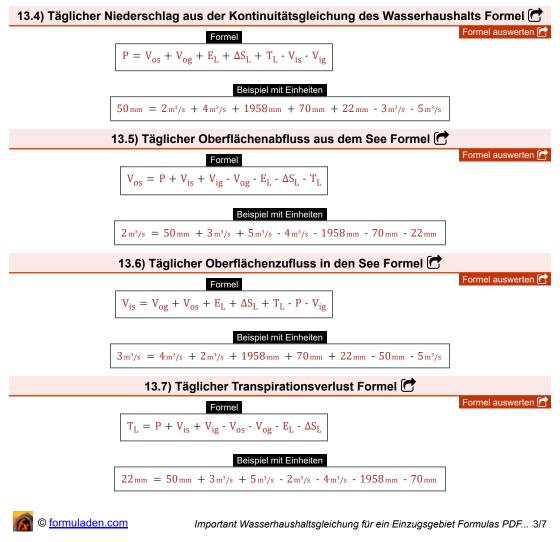
 $A = \left(\frac{Q_p}{C}\right)^2 \left| 0.0005 \,\mathrm{m}^2 \right| = \left(\frac{4 \,\mathrm{m}^3/\mathrm{s}}{177}\right)^2$

6) Grundwasserspeicherung gegebene Wasserspeicherung im Einzugsgebiet Formel 🕝


Beispiel mit Einheiten

Formel auswerten

Formel auswerten


 $\Delta S = S - \Delta Ss - \Delta Sm$

 $7 \,\mathrm{m}^3 = 18 \,\mathrm{m}^3 - 5.0 \,\mathrm{m}^3 - 6 \,\mathrm{m}^3$

Beispiel mit Einheiten

 $70\,\mathrm{mm}\ =\ 50\,\mathrm{mm}\ +\ 3\,\mathrm{m}^3/s\ +\ 5\,\mathrm{m}^3/s\ -\ 2\,\mathrm{m}^3/s\ -\ 4\,\mathrm{m}^3/s\ -\ 1958\,\mathrm{mm}\ -\ 22\,\mathrm{mm}$

13.2) Gleichung für die tägliche Verdunstung des Sees Formel 🕝

Beispiel mit Einheiten $1958\,\mathrm{mm} \,=\, 50\,\mathrm{mm} \,+\, \left(\,3\,\mathrm{m}^3/\mathrm{s}\,\,-\,2\,\mathrm{m}^3/\mathrm{s}\,\,\right) \,+\, \left(\,5\,\mathrm{m}^3/\mathrm{s}\,\,-\,4\,\mathrm{m}^3/\mathrm{s}\,\,\right) \,-\,22\,\mathrm{mm}\,\,-\,70\,\mathrm{mm}$

13.3) Täglicher Grundwasserzufluss Formel 🕝

Beispiel mit Einheiten $5\,\mathrm{m}^3/\mathrm{s} \,=\, 2\,\mathrm{m}^3/\mathrm{s} \,+\, 4\,\mathrm{m}^3/\mathrm{s} \,+\, 1958\,\mathrm{mm} \,+\, 70\,\mathrm{mm} \,+\, 22\,\mathrm{mm} \,-\, 50\,\mathrm{mm} \,-\, 3\,\mathrm{m}^3/\mathrm{s}$

 $E_{L} = P + (V_{is} - V_{os}) + (V_{ig} - V_{og}) - T_{L} - \Delta S_{L}$

 $V_{ig} = V_{os} + V_{og} + E_L + \Delta S_L + T_L - P - V_{is}$

Formel auswerten

Formel auswerten

13.8) Täglicher Versickerungsabfluss Formel 🕝

Formel auswerten

Formel

$$V_{\text{og}} = P + V_{\text{ig}} + V_{\text{is}} - V_{\text{os}} - E_{\text{L}} - \Delta S_{\text{L}} - T_{\text{L}}$$

Beispiel mit Einheiten

 $4\,{\rm m}^3/s\ =\ 50\,{\rm mm}\ +\ 5\,{\rm m}^3/s\ +\ 3\,{\rm m}^3/s\ -\ 2\,{\rm m}^3/s\ -\ 1958\,{\rm mm}\ -\ 70\,{\rm mm}\ -\ 22\,{\rm mm}$

In der Liste von Wasserhaushaltsgleichung für ein Einzugsgebiet Formeln oben verwendete Variablen

- a Fläche von Seen oder Stauseen (Quadratmeter)
- A Einzugsgebiet (Quadratmeter)
- A_{NFRC} Bereich
- C Koeffizient
- C_{NFRC} Konstante C
- E_L Tägliche Seeverdunstung (Millimeter)
- L Abflussverluste (Kubikmeter)
- P Niederschlag (Millimeter)
- Q Abflussrate (Kubikmeter pro Sekunde)
- Q_{mean} Mittleres jährliches Hochwasser (Kubikmeter pro Sekunde)
- Q_n Spitzenentladung (Kubikmeter pro Sekunde)
- RSMD RSMD
- S Speicherung von Wasser (Kubikmeter)
- S_C Gefälle des Einzugsgebietes
- S_r Oberflächenabfluss (Kubikmeter pro Sekunde)
- SF Stream-Frequenz
- SO Bodentyp-Index
- T_L Täglicher Transpirationsverlust (Millimeter)
- V_{ig} Täglicher Grundwasserzufluss (Kubikmeter pro Sekunde)
- V_{is} Täglicher Oberflächenzufluss (Kubikmeter pro Sekunde)
- V_o Massenabfluss (Kubikmeter)
- V_{og} Täglicher Sickerabfluss (Kubikmeter pro Sekunde)
- V_{os} Täglicher Oberflächenabfluss (Kubikmeter pro Sekunde)
- Δs Wandel im Massenspeicher (Meter)
- AS Veränderung der Grundwasserspeicherung (Kubikmeter)

Konstanten, Funktionen, Messungen, die in der Liste von Wasserhaushaltsgleichung für ein Einzugsgebiet Formeln oben verwendet werden

- Messung: Länge in Millimeter (mm), Meter (m)
 Länge Einheitenumrechnung
- Messung: Volumen in Kubikmeter (m³)
 Volumen Einheitenumrechnung
- Messung: Bereich in Quadratmeter (m²)
 Bereich Einheitenumrechnung
- Messung: Volumenstrom in Kubikmeter pro Sekunde (m³/s)
 Volumenstrom Einheitenumrechnung

- ΔS_L Zunahme der Seespeicherung an einem Tag (Millimeter)
- ΔSm Änderung der Bodenfeuchtigkeitsspeicherung (Kubikmeter)

Laden Sie andere Wichtig Ingenieurhydrologie-PDFs herunter

- Wichtig Abstraktionen vom Niederschlag Formeln (*)
- Wichtig Flächen-, Geschwindigkeitsund Ultraschallmethode zur Messung des Wasserdurchflusses Formeln
- Wichtig Entladungsmessungen
 Formeln
- Wichtig Indirekte Methoden der Stromflussmessung Formeln

- Wichtig Niederschlagsverluste
 Formeln (*)
- Wichtig Messung der Evapotranspiration Formeln (
- Wichtig Niederschlag Formeln 🕝
- Wichtig Stromflussmessung
 Formeln
- Wichtig Wasserhaushaltsgleichung für ein Einzugsgebiet Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- Prozentualer Rückgang
- GGT von drei zahlen 🕝
- 🌆 Bruch multiplizieren 🗁

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 10:01:55 AM UTC